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Links between Success in Non-measurement and
Calculation Tasks in Area and Volume
Measurement and Pupils’ Problems
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Abstract

Measurement in geometry is one of the key areas of school mathematics, however, pupils
make serious mistakes when solving problems involving measurement and hold misconcep-
tions. This article focuses on the possible links between lower secondary pupils’ (n = 870)
success in solving non-measurement tasks and calculations tasks on area and volume and
on their problems when solving measurement tasks. The study uses a mixed research de-
sign. Statistical methods are used to find correlations between the two types of tasks and
a qualitative analysis is carried out to identify mistakes and misconceptions. The results
show that there are indeed relatively strong links between success in non-measurement
tasks and calculation tasks, and consequently, when teaching, attention must be paid to
the development of both types of skills. The study identified pupils’ mistakes in tasks
which are within the Czech curriculum but which proved to be difficult, such as a missing
link between algebraic and geometric representations, a tendency to linearize and/or to
employ pseudo-analytical thinking. The study identified differences between individual
classes which point to the significant role of the teacher and/or influence of the textbook
used.
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Vztah mezi úspěšností v nenumerických
a numerických úlohách na obsah a objem

a žákovské problémy
Abstrakt

Míra v geometrii patří mezi klíčové oblasti školské matematiky, žáci však dělají při řešení
úloh na míru závažné chyby a objevují se u nich miskoncepce. Článek se zabývá souvislostí
mezi úspěšností žáků druhého stupně (n = 870) při řešení nenumerických a numerických
úloh na obsah a objem a jejich problémy při řešení těchto úloh. Výzkum má smíšený
charakter. Statistické metody jsou použity pro zjištění korelací mezi oběma typy úloh
a kvalitativní analýza má za cíl identifikovat chyby a miskoncepce. Výsledky ukazují, že
existuje silné spojení mezi úspěšností v nenumerických a numerických úlohách, a proto
se při výuce musí dbát na rozvoj obou typů dovedností. Výzkum identifikoval žákovské
chyby u úloh, které patří do českého kurikula, avšak ukázaly se jako pro žáky příliš obtížné,
např. chybějící spojení mezi algebraickou a geometrickou reprezentací, tendence lineari-
zovat a pracovat v pseudo-analytickém módu. Výzkum také identifikoval rozdíly mezi
jednotlivými třídami, což ukazuje na důležitou roli učitele a použitých učebnic.

Klíčová slova: míra v geometrii, obsah, objem, strukturace prostoru, vzorce.
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Introduction

Measurement in geometry, that is the notions of length, area and volume mea-
surement and calculations, is a key area of mathematics, and not only because it
has strong real-life applications. Understanding geometric measurement in school
mathematics means “(1) conceptualizing that numbers can be used to quantify the
amount of the attribute (e.g., length, area, volume) contained in a geometric object
by determining the number of attribute-units that fit in the object and (b) being able
to implement procedures for assigning measurements to objects (e.g., iterating units,
using a ruler, choosing appropriate measurement units)” (Battista, 2007: p. 891).
However, pupils often do not have a good understanding of area and volume

measurement and calculations (see section 1.2). In the Czech context, national and
international tests point to problems pupils have with structuring space and con-
necting it to multiplication, and to their low ability to use other strategies than
formulas, such as de-composing and re-composing (Vondrová, 2015). Rendl and
Vondrová (2014) identified problems of Grade 8 pupils with the use of geometric for-
mulas in TIMSS 2007 and attributed it to their failure to link algebraic expressions
and geometric representations. The follow-up qualitative research showed, among
others, the inability of average lower-secondary pupils to use a rectangular structure
to find area and volume (Vondrová, 2015). Moreover, the pupils’ way of tiling a
shape highly correlated with their success in problems on area and volume (Tů-
mová & Janda, 2014) which opens a question of possible links between structuring
space and solving calculation problems in measurement. Apart from single stud-
ies (Divišová, 2012; Kuřina, 2011; Vondrová, 2015), there is no systematic research
aimed at measurement in the Czech context. The aim of this study is to investigate
the ability of lower-secondary pupils to solve problems in geometric measurement,
to bring insight into their mistakes and misconceptions and to investigate possible
links between spatial skills and the ability to solve calculation tasks in measurement.

1 Theoretical framework and related

literature

It is generally agreed that the concepts of length, area and volume are based on
several key concepts (Curry, Mitchelmore & Outhred, 2005; Battista, 2007): con-
servation, unit, numerical processes and algebraic representation. When measuring
area (length, volume), the assumption is that the units are conserved and can be
combined in different ways (Piaget, Inhelder & Szeminska, 1960). For example,
pupils come to understand that when a shape is divided into parts and these parts
are re-arranged, the area remains the same. To find a number which expresses the
area (length, volume), a unit is selected and iterated until the shape is fully covered.
When arranging units into rows and columns, pupils come to understand that the
area, for example, depends on the number of rows and the number of columns and
that there is a multiplicative relationship between these numbers. The algebraic
representation consists of writing a formula in numbers and later in letters.

1.1 Learning trajectory for area and volume

While most researchers concentrate on the enumeration of units as the main no-
tion in the learning of area and volume (Outhred & Mitchelmore, 2000; Battista,
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2004; Sarama & Clements, 2009), Battista in his later work proposes a learning tra-
jectory for area and volume that contains two parallel streams: measurement and
non-measurement reasoning. By the latter, he means reasoning that does not use
numbers (Battista, 2007: p. 894). Figure 1 depicts the trajectory.
De-composition and re-composition of shapes is hypothesized to be crucial for

understanding measurement in geometry (e.g., Rahim & Siddo, 2012), which is
also supported by a historical parallel. The starting point for the development of
measurement in Euclidean Geometry were comparisons between quantities (with
the main strategy being the “overlapping” — epithesis) — i.e., non-measurement
activities (Zacharos, 2006).
The measurement and non-measurement streams are supposed to work best in

combination. For example, Huang and Witz’s (2011) intervention study showed
that the optimal curriculum for learning area was “combined”. In the study, the
control group did not learn anything about area, the AM group had a curriculum
in which an emphasis was on the application of formulas and numerical calculations
used in determining areas while the geometric operations of de-composition and re-
composition were only used in the discovery of the formulas, the GM group focused
on relationships between shape change and area and the geometric operations were
used similarly to the AM group, and finally, the GMAM group’s curriculum empha-
sized relationships between the two streams. The GMAM group outperformed the
other groups in mathematical judgement tasks and explanation tasks, only in the
calculation tasks in which a simple application of a formula was required, there was
no difference between the AM and GMAM groups.

Non-measurement reasoning Measurement reasoning
1. Holistic visual comparison of
shapes

1. Use of numbers not connected to unit
iteration

2. Visual comparison of shapes by
de-composing/re-composing

2. Unit iteration and enumeration
(coordinated structuring of space into
arrays), includes:

3. Comparison of shapes by
property preserving
transformations/de-compositions

• Units properly located only along the
edges/sides

• Units properly located without overlaps
or gaps

• Units organized into composites (layers)
– repeated addition; multiplication

• Operating with other units than cubes

3. Operating on numerical measurement

• Structuring becomes implicit — multipli-
cation of measures

4. Integrated measurement and non-measurement reasoning (understanding
formulas for non-rectangular or composite shapes, deriving length from area,
etc., relation between units)

Figure 1: Scheme of learning trajectory for area and volume (according to Battista, 2007)
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Zacharos’s intervention study (2006) showed how the curriculum influences pu-
pils’ solving methods. The experimental group was learning to determine area using
squares or other plane figures as units while the teaching in the control group was
aimed at deriving the formula for the area of a rectangle and using this formula
for area calculations. In the post test, the pupils from the control group measured
the sides and used multiplication to determine the area but had problems with in-
terpreting the results of their calculations (they lacked conceptual understanding)
and made mistakes more frequently. The most common mistake was calculating the
area of a figure as a multiple of two side lengths when the figure was not rectan-
gular or regular. On the other hand, the “covering/overlapping” strategies of the
experimental group led much more frequently to the correct solution and the pupils
understood more often what they were measuring.

1.2 Pupils’ problems in measurement

Research has pointed to problematic areas in geometric measurement. First, pupils
of different ages have problems with the conservation of area (Kamii & Kysh, 2006;
Tan Sisman & Aksu, 2016). Second, many problems are caused by a missing link
between structuring space and numeric reasoning (Battista, 2007; Huang & Witz,
2013). Pupils do not see the underlying structure behind multiplication. Another
source of problems are geometric formulas. Pupils fail when solving problems in
which no numbers are given and thus, geometric formulas do not help and non-
measurement reasoning must be used (e.g., Divišová, 2012; Kordaki, 2003; Kospen-
taris, Spyrou & Lappas, 2011; Kuřina, 2011). Pupils often resort to formulas even
in such problems and their knowledge of formulas functions as an obstacle. In fact,
using a formula when the problem concerns area or volume is often the first, auto-
matic strategy pupils resort to even before trying to imagine the situation (Vondrová,
2015), which can be seen as a manifestation of pseudo-analytical thinking (Vinner,
1997). Moreover, the formula for the area of a rectangle is such a frequent and
strong model of area, that it replaces the concept of area as such for some pupils
and they use it for different shapes too (Herendiné-Kónya, 2015; Kamii & Kysh,
2006; Kordaki & Potari, 2002; Vondrová, 2015; Zacharos, 2006).
Pupils’ misconceptions in geometric measurement include “shapes of the same

perimeter have the same area” (Dembo, Levin & Siegler, 1997) and “the area (vol-
ume) grows in a liner way, the same as the side of the shape” (De Bock et al.,
2007). Pupils have frequent problems with geometric units (Battista, 2007; Tan
Sisman & Aksu, 2016; Vondrová, 2015). Quite a comprehensive list of errors and
misconceptions of Grade 6 pupils when solving conceptually and procedurally ori-
ented tasks is given in (Tan Sisman & Aksu, 2016). To sum up, pupils of different
ages, and worldwide, seem to hold similar misconceptions and have similar problems
in area and volume measurement tasks.

1.3 Spatial abilities and non-measurement reasoning

Non-measurement reasoning is clearly related to spatial skills or abilities.1 Some
authors (e.g., Tartre, 1990) see spatial skills as consisting of two main factors: spatial
visualization and spatial orientation. Non-measurement reasoning is part of the
former, that is, it relates to “the ability to mentally manipulate, rotate, twist or
invert a pictorially presented stimulus object” (McGee, 1979), without changing or

1Some authors use skills (Tartre, Sarama, Friedman), while others use abilities (McGee,
Pitallis).
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moving the perceptual perspective of the person viewing the object (which relates
to the second factor of spatial skills, i.e., spatial orientation).
Research indicates that there is a correlation between spatial skills and success in

mathematics in general (e.g., see the meta-analysis by Friedman, 1995). Sarama and
Clements (2009) in their meta-analysis of research claim that spatial skills directly
support children’s learning of specific topics, including measurement, and highlight
a consistent finding that spatial skills and mathematics achievement are connected
for older pupils.
Pittalis and Christou (2010) investigated a relationship between four types of

reasoning in 3D geometry (representing 3D objects, spatial structuring, conceptu-
alizing mathematical properties and measurement reasoning) and spatial abilities
(spatial visualization, spatial orientation and spatial relations) of pupils in Grades 5
to 9. They showed that spatial abilities constitute a strong predictor of pupils’
performance in the four types of 3D reasoning.
Hannighofer et al. (2011) focused on a relationship between Grade 3 and Grade

4 pupils’ figural reasoning ability (tested by subscales for figural analogy and figu-
ral classification of the Kognitiver Fähigkeits-Test, Heller & Perleth, 2000, cited in
Hannighofer et al., 2011) and measurement competencies, consisting of Instrumental
knowledge and Measurement sense. The former means “having available straightfor-
ward and isolated measurement knowledge and procedures” (such as conversion of
measures and their comparison) and the latter “having available knowledge about
measures and units of measurement in everyday life and being able to apply all
kinds of measurement knowledge in context situations” (p. 656) (such as knowledge
of daily life sizes, knowing which unit of measurement belongs to an attribute, con-
text problems about additive and multiplicative calculation with one attribute and
multiple units of measurement). Figural reasoning was found to have the largest
effect on the overall measurement competence and on the Instrumental knowledge
and Measurement sense, in particular, as compared to the effect of grade and gender.
Apart from these studies, we did not find any research which would correlate

pupils’ spatial skills and geometric measurement. One of the aims of our study is to
investigate this correlation.

1.4 Research questions

To sum up, authors seem to agree that for pupils’ understanding of measurement in
geometry and success in solving calculation problems, non-measurement reasoning
and spatial skills are crucial. Our study addresses the following research questions:
RQ1: How successful will lower secondary pupils from different grades be in

solving non-measurement and calculation tasks? What are their mistakes and mis-
conceptions in tasks which proved to be the most difficult for them?
RQ2: How strong is the relation between non-measurement reasoning/spatial

skills and success in solving problems on area and volume calculations?

2 Methodology

2.1 Research design

A mixed research design is used in our study to answer the research questions. Pupils
were given a test with two parts (see section 2.3). The part A tasks evaluated their
non-measurement reasoning (spatial skills) and the part B tasks were aimed at their
ability to carry out area and volume calculations.
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Two samples of pupils took part in our study. The test for Sample 2 differed
from the test for Sample 1 in that the tasks in part B were assigned in random order.
This was done with the aim of showing that the relative difficulty of individual tasks
would remain roughly the same even though the order of the tasks changed and to
check whether any correlations found would remain stable with a different sample.
Part A of the test was the same for both samples.

2.2 Research sample

Sample 1 consists of 747 pupils from 40 classes (Grades 6 to 9) in 8 ordinary primary
schools in Prague. The schools are representatives of a broad spectrum of socioeco-
nomic backgrounds, they are schools for pupils from their immediate surroundings.
Three of the schools had one class in each grade specialized (in mathematics or in
languages). The number of pupils in the specialized classes is less than 10% of the
sample.
Sample 2 consists of 123 pupils from 6 classes (Grades 7 to 9) from 2 primary

schools in Prague. The sample includes 30% from classes specialized in mathematics.
The pupils from both samples were not selected in any way (entire classes par-

ticipated).

2.3 Instrument

Part A of the test was to assess non-measurement reasoning related to spatial visu-
alization skills. There are standardized (psychological) tests to assess spatial skills,
however, most of them are not freely available. Therefore, we decided to modify
locally developed tests already used in the Czech context (Plšková, 2010; Slezáková,
2011). Slezáková developed her test based on the “Test of Squares” which is part
of Amthauer I-S-T universal intelligence tests, that are based on Rybakov figures.
The sources for the test that Plšková used are not mentioned in her work, but the
type of tasks corresponds to parts of the Amthauer I-S-T universal intelligence tests
(2001), Differential Aptitude Test: Space Relations (Sorby, 2009) and other spatial
ability tests available on-line.
Part A1 of the test finally used in our study is concerned with transformations

of plane figures (de- and re-composition of shapes) and part A2 focuses on transfor-
mations in 3D space.
Part A1 consists of 20 polygons that should be modified to create an equilateral

triangle (tasks U1–U20, see Appendix A). This is the assignment which included a
worked-out example:
Below you will find 20 polygons, your task is to draw a single straight line where

to cut the polygon so that after rearranging the parts, you get an equilateral triangle.
The cut must always connect two vertices of the polygon. You also must indicate
where the cut-off part should be placed as in the example below:

Task: You imagine: You draw:
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Part A2 is composed of several types of tasks that are used in testing spatial skills
(Plšková, 2010; Amthauer et al., 2001, Differential Aptitude Test: Space Relations
(DAT:SR) Sorby, 2009; tests available on the web2). There are 5 tasks in part A2
(tasks H8–H12) but some of them contain subtasks and thus this part of the test is
comprised of 16 subtasks (see Appendix B). Namely, task H10 concerns mental cube
rotation, tasks H9 with 4 subtasks is about mental rotation of other solids, tasks
H8 and H11, each with 4 subtasks, concern the composition of a solid based on a
given net, and task H12 with 3 subtasks is aimed at the calculation of the number
of missing cubes in a cuboid made of small cubes. An example of a task from part
A2 is H9.

Task H9: How would the building made of cubes look from the other side (from the
back)? Example:

Building: You should draw:

a) b)

Part B of the test focuses on the pupils’ ability to calculate areas and volumes.
There are 5 tasks related to area calculation (H2–H6) and 4 tasks related to the
calculation of volume (H13–H16) (see Appendix C). An attempt was made to use
non-routine or novel tasks that require more advanced understanding of the under-
lying principles and concepts rather than a simple use of a formula. An example is
H4.

Task H4: The picture shows a plan of a garden. The
hatched SQUARE represents grass and the solid rectangle is
a flowerbed. Calculate the area of the flowerbed if you know
that the area of grass (hatched square) is 64m2 and the shorter
side of the flowerbed is 3m long.

Mathematics education researchers examined the content validity of the test and
small-scale pilot testing addressed its construct validity (this is described together
with a detailed a-priori analysis of all of the tasks in Tůmová, 2017b).
Note: The tasks from part A of the test will be referred to as non-measurement

tasks and the tasks from part B as calculation tasks.

2Available from http://www.123test.com/spatial-reasoning-test/index.php;
http://www.intelligencetest.com/questions/spatial.htm
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2.4 Procedure

After small-scale pilot testing of the tasks and revision based on discussions with
experts, the test was administered to the pupils by their mathematics teachers who
had been previously instructed how to do it. Part A1 had a time constraint of
10 minutes, part A2 and B were not to exceed 45 minutes (to fit within one lesson).
The test for Sample 1 was administered in September 2015, at the beginning of the
school year, while the test for Sample 2 was assigned in February 2016, in the middle
of the school year. Part A1 was usually done on a different day than the rest of
the test, because all the parts took more than one standard lesson. For part B, the
pupils were to be allowed calculators, however, some teachers decided to ban them,
against our instructions. The pupils had standard equipment like pens, pencils,
rulers, etc. All questions they asked during the test were recorded together with the
answers from the respective teacher for us to check whether some classes did not get
unintentional hints from the teacher.
The total of 747 pupils from Sample 1 completed parts A2+B of the test, out of

which 27 pupils did not complete part A1 (they were absent when it was assigned).
They were excluded from the calculation of correlations between the ability to solve
non-measurement tasks and calculation tasks (RQ2) but their work is used for RQ1.
In Sample 2, a total of 123 pupils completed all parts of the test.

2.5 Analysis of data

The pupils’ written solutions were coded by the first author and two more coders.
First, the success rates were determined. Points for non-measurement tasks were

assigned in a dichotomous way: 1 for the correct answer and 0 for an incorrect one.
For the calculation tasks, the scale 0, 1, 2 was used, where 2 points were assigned for
the correct solution (possibly with insignificant inaccuracies or omissions), 1 point
for a partially correct solution and 0 point for an incorrect solution or if the task
was skipped. Aggregated results for non-measurement tasks and calculation tasks
were used to assess the correlation between those two factors.
Next, several variables were defined capturing the measurement of different con-

structs. To measure non-measurement skills (a subset of spatial skills), the variable
SPATIAL was introduced. It is calculated as a total score (expressed in a percent-
age of the maximum available points) in all 36 tasks and subtasks measuring spatial
skills (i.e., U1–U20 and H8–H12). Based on the factor analysis of the data, the
variable Ch STRAT was defined to capture the ability to use different strategies in
non-measurement tasks (this includes tasks U1, U7, U10 and U15). To measure the
success of the pupils in the area and volume problems in Part B of the test, the vari-
able CALC was defined as the total score in all nine calculation tasks (i.e., H2–H6
and H13–H16) and expressed as percentage of the maximum available points (i.e.,
18). Based on the factor analysis of the results, the variable F CONC was defined to
measure success in more conceptually oriented tasks (this includes the same tasks as
the variable CALC, only with tasks H2 and H3 removed). The statistical methods
as depicted in section 3.2 were used to answer RQ2.
Finally, a qualitative analysis of the pupils’ solutions was made to determine the

pupils’ mistakes and possible misconceptions (RQ1). The pupils’ written solutions
were coded using phenomena known from literature (e.g., the two misconceptions
mentioned in section 1.2). The coding scheme was amended by new phenomena as
they emerged from the written work in an open coding manner. In many cases, the
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written solutions did not provide us with sufficient information to make assumptions
about the possible causes of the pupils’ failure and thus the numbers of mistakes of
a certain type presented below must be interpreted with caution.

3 Results

3.1 Success in tasks and mistakes and misconceptions

(RQ1)

3.1.1 Non-measurement tasks

Tab. 1 lists the success rates for the three most difficult tasks in each category of
non-measurement tasks. For part A1 (tasks U1–U20), the order of tasks was the
same for both samples, while in part A2, the order was randomized for Sample 2.
The three most difficult tasks are the same in both samples.

Table 1: Success rates for the three most difficult tasks in both parts of the spatial skills
test

Part A1 (2D) Sample 1 Sample 2 Part A2 (3D) Sample 1 Sample 2
U15 10,7% 22,2% H10 28,8% 54,5%
U1 15,3% 31,0% H12.3 53,9% 71,5%
U7 17,3% 22,2% H12.1 57,0% 72,4%

The most difficult tasks in this category (for both samples) were tasks U15, U1
and U7 — see fig. 2 for the respective polygons which were to be re-arranged into
an equilateral triangle. The most frequent strategy to solve tasks U1–U20 was to
cut off the “smallest part that is sticking out”3 (see fig. 3) or to place an equilateral
triangle on top of the polygon and see what is missing (see fig. 4, left). However,
to solve the tasks in question (U15, U1, U7), one had to apply a different strategy
(see fig. 4, right) and the strategies successful in other polygons became distractors
that probably prevented pupils from finding the correct solution.

Figure 2: The most difficult tasks in the polygon de- and re-composition section (2D
spatial skills test)

Figure 3: Strategy “cut off the smallest part that is sticking out”

3Which is also a strategy shown in the worked-out example.
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Figure 4: Incorrect (left) and correct solutions to tasks U15 and U1

In Part A2 which was dedicated to spatial skills in 3D, the most difficult task
was H10 (cube rotation). The reason probably was that there is no reference object
that the pupils could use for comparison. This task was followed by the subtasks
of H12 (the enumeration of missing cubes in a cuboid). The most difficult of the
H12 subtasks was H12.3 — a blue cube building (see fig. 5). This building has the
biggest base of the three buildings (5 × 4) and the most frequent incorrect answer
was 10 cubes (165 pupils). This is probably because these pupils calculated those
cubes only that had at least one side next to the existing building and forgot to
include the 2 cubes in the corners (since their sides touch the missing cubes only).

Figure 5: Blue cube building task H12.3

3.1.2 Calculation tasks

Next, we will consider Part B of the test which measured the pupils’ ability to
calculate areas and volumes. Before we look at the most difficult tasks and problems
the pupils had with them, we will consider the grade issue — we present this analysis
only for the variable CALC since the results for the variable F CONC are similar and
do not bring any new information. As could be expected, we found increasing success
rates in higher grades (fig. 6). This must be interpreted with caution, however, as
our study is a cross-sectional one, not a longitudinal one.

Figure 6: Box plot of CALC results per grade for Sample 1 (left) and Sample 2 (right)
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Moreover, there are quite significant differences between individual classes. For
Sample 1, we only show results aggregated by school and grade since showing all
40 classes would make the chart hard to read (fig. 7). For Sample 2, the two
mathematics-specialized classes are in Grades 8 and 9 and are marked by hashed
boxes (fig. 8).

Figure 7: Sample 1 CALC results per school and grade

Figure 8: Sample 2 results per class
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Tab. 2 shows the average success rates in the five tasks that proved to be the
most difficult calculation tasks for Sample 1. The difficulty of tasks H15 and H16
is not caused only by the fact that they were the last ones in the test. These tasks
were also the most difficult ones for Sample 2 where the order of tasks was random.

Table 2: Success rates for the most difficult calculation tasks for area and volume

Sample 1 Sample 2
N = 747 (Grades 6 to 9) N = 123 (Grades 7 to 9)
Success rate No attempt Success rate No attempt

H15 5% 54% 22% 15%
H16 12% 74% 38% 33%
H5 15% 36% 39% 18%
H14 19% 65% 44% 35%
H6 23% 38% 38% 22%

Figure 9: Solution to task H5 by a 6th grader

The most frequent misconception in tasks H5 and H15 was the assumption that
if a side, or an edge, of the square, or the cubic unit, becomes 2 times bigger, so does
the area, or the volume of the unit (the illusion of linearity, De Bock et al., 2007).
For example, figure 9 shows a solution of a pupil from Grade 6. He assumes that if
300 of 10× 10 tiles are needed, then 150 of 20× 20 tiles must be used to cover the
same area.
The pupils’ tendency to solve the tasks based on cue words (to work in a pseudo-

analytical mode, Vinner, 1997) rather than to make an image of the situation proba-
bly contributed to the small success rate. Only 10% of the pupils who attempted H5
and 5% of those attempting H15 drew a diagram to gain insight into the situation.
Task H16 required the pupils to calculate the height based on the volume and

the base. Most of the pupils did not know how to solve it. 85% of Sample 1 pupils
either did not attempt the task or just made a drawing or calculated the area of
the base even though most of them had already learned the formula for calculating
the volume of a cuboid (l × w × h). Some pupils wrote in their solution that they
“lack the length of the height of the vase” which shows that they did not grasp
the assignment and that when they saw that volume was involved, they wanted to
use the formula to calculate it. Some solved this obstacle by making up the height
which they then used in their calculations.
Task H14 (calculating the number of cuboid shaped parcels that would fit into a

cubic box) motivated the pupils to use graphical solving strategies more often. The
graphical or manipulative strategy usually consisted in picturing the first layer of
the parcels in the box, calculating their number and multiplying it with the number
of layers. The calculation strategy included determining the volume of the box and
dividing it by the volume of the parcel. In both samples, almost exactly half of the
pupils who tried to solve the task used a graphical strategy. Both types of strategies
were equally successful — both led to the correct solution in approximately 35% of
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cases (in Sample 1). The main cause for failure was either using a wrong calcula-
tion or an incorrect formula for volume (in the calculation strategy) or arranging
parcels incorrectly into the first layer (graphical strategy). This points to a possi-
ble disconnection between a geometric situation and an algebraic description of the
relationship (i.e., formula or operation) and to problems with structuration of space.
Task H6 is similar to a problem in TIMSS 2007 which proved to be very difficult

for Czech Grade 8 pupils (their success rate was only 23%, Rendl & Vondrová, 2014).
The most frequent mistake of H6 was that pupils compared perimeters rather than
areas. Confusing area and perimeter is a mistake often seen in literature (e.g., Tan
Sisman & Aksu, 2016). In the Czech language, it is supported by the fact that words
“area” and “perimeter” start with the same letters (“obsah” vs. “obvod”). However,
in H6, the word “area” does not appear so the problem must lie in conceptual
understanding rather than in a simple confusion of mathematical terms. The second
most frequent mistake was a wrong formula for the area of a triangle (such as a · b · c
or a · b). Quite a number of pupils only used a visual impression of the parts of the
rectangle to argue for the congruence (or not) of their areas.

3.2 Relation between non-measurement reasoning and

success in calculation tasks (RQ2)

3.2.1 Variables for measurement of constructs and their

characteristics

As stated above, the variable SPATIAL was introduced to measure non-measure-
ment skills consisting of the results of 36 tasks and subtasks measuring spatial skills
(i.e., U1–U20 and H8–H12). Tab. 3 shows descriptives for the variable SPATIAL
for both samples. The reliability in both tests (calculated as Cronbach’s alpha) is
satisfactory.

Table 3: Descriptives for the variable SPATIAL for both samples

Variable
SPATIAL

Mean S.E. Median St. dev.
Reliability

(Cronbach’s α)
N

Sample 1 0.558 0.007 0.569 0.189 0.886 720
Sample 2 0.690 0.017 0.722 0.186 0.884 123

Moreover, we performed a factor analysis of the results for Sample 1 in the tasks
from parts A1 and A2 to determine the main factors that constitute spatial skills as
measured in our test (i.e., the variable SPATIAL). The best fitting model — we used
the principal components method for factor extraction with a varimax rotation —
consists of seven factors which explain more than 50% of the variability of the
variable SPATIAL. The two most influential factors are correlated with tasks from
part A1 — the first factor with most of the tasks U2 to U9 and the second factor
with tasks U11 to U20. These factors probably describe the skills in 2D shapes de-
composition and transformations and differ only in the speed with which the pupils
could apply their solving strategy to different cases (tasks U11 to U20 were located
on the second page of the sheet and there was a higher percentage of pupils who did
not have enough time to solve them). There are four tasks in part A1 (U1, U7, U10
and U15 — the most difficult tasks in this part) that do not contribute to any of
these first two factors but create a separate factor. We decided to call it “Change
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of Strategy” since solving these tasks requires the ability to try various strategies
in the transformation tasks (see section 3.1.1). We decided to create a separate
variable out of these four tasks and call it Ch STRAT.
The remaining four factors each correlate with subtasks of one of the tasks H8,

H9, H11 and H12. It is not surprising given the fact that each of these tasks was
selected from different parts of various space skills tests. Tasks H8 and H11 both
work with nets of solids but their results are not very well correlated — this is
probably because H8 deals with the ability to visualize the shape of a 3D solid that
can be made of a certain net, while task H11 is aimed at the mental rotation of the
composed solid (and the position and orientation of its sides — not only how the
shape will look). Task H10 is best correlated with the factor “Change of Strategy”
but the correlation is not that strong (only 0.44). The task would reduce the relia-
bility of the composed variable, thus, it is not included in the variable Ch STRAT.
Tab. 4 shows descriptives for this variable for both samples. The reliability in both
tests (calculated as Cronbach’s alpha) is satisfactory (given the fact that it consists
of 4 tasks only). We will use this variable in our correlation analysis as well and
investigate its relationship with success in calculation tasks.

Table 4: Descriptives for the variable Ch STRAT for both samples

Variable
Ch STRAT

Mean S.E. Median St. dev.
Reliability

(Cronbach’s α)
N

Sample 1 0.154 9 0.007 03 0.00 0.244 5 0.607 720
Sample 2 0.272 4 0.028 60 0.25 0.316 9 0.678 123

To describe success in calculation tasks, the variable CALC was introduced as the
total score in all nine calculation tasks (i.e., H2–H6 and H13–H16). Tab. 5 shows
descriptives for the variable CALC in the test for both samples. The reliability
(calculated as Cronbach’s alpha) is satisfactory for both samples.

Table 5: Descriptives for the variable CALC

Variable
CALC

Mean S.E. Median St. dev.
Reliability

(Cronbach’s α)
N

Sample 1 0.236 6 0.008 7 0.166 7 0.237 4 0.792 747
Sample 2 0.448 1 0.029 3 0.444 4 0.324 8 0.869 123

To check whether the selected tasks measure one construct only, we performed
a factor analysis on Sample 1 results of the tasks in part A2 and B to identify
components of this part of the test. Tasks from part A2 were part of this analysis
(but we looked at the aggregated results for the tasks H8–H12, not at results of the
individual subtasks). We wanted to show that they created a different factor (i.e.,
the factor of spatial skills which differs from the CALC part of the test). The best
interpretable model — again, we used the principal components method for factor
extraction with a varimax rotation — consists of 3 factors which explain 43% of the
variability of the total result. The first factor correlates well with tasks H4 to H6 and
H13 to H16 and we decided to interpret it as a factor of “conceptual understanding
of area and volume”. The tasks included in this factor are almost identical with
the tasks we designed for the variable CALC. The only difference is the exclusion
of tasks H2 and H3, which are tasks not requiring a deeper understanding of the
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tested concepts. Based on this factor, we decided to create the variable F CONC
that consists of 7 tasks: H4–H6 and H13–H16 and measures success in conceptually
oriented area and volume tasks. Descriptives for this variable are shown in tab. 6.

Table 6: Descriptives for the variable F CONC

Variable
F CONC

Mean S.E. Median St. dev.
Reliability

(Cronbach’s α)
N

Sample 1 0.187 0 0.008 7 0.142 9 0.237 0 0.768 747
Sample 2 0.415 8 0.030 4 0.357 1 0.337 4 0.845 123

Note that the more difficult area (H4–H6) and volume (H14–H16) tasks are
always part of one single factor in all modifications of the factor model we tried
(i.e., with different numbers of factors, different extraction methods and rotations).
The results in area tasks are more strongly correlated with results in volume tasks
than with the easier area tasks (i.e., H2 and H3). This might suggest that the
development of concepts of area and volume is parallel and connected (see also
Eames et al., 2014).
Tasks H8 to H12 were indeed found to correlate well with one of the identified

factors (the “space skills” factor), only the correlation of task H8 with this factor
was slightly weaker (0.37). The remaining factor consisted of tasks that did not
require a deeper understanding of area and volume and we decided not to use this
factor in our further analyses.

3.2.2 Calculating correlations

The distribution of results in non-measurement tasks (the variable SPATIAL) and
a visual check of a corresponding Q-Q plot suggest that the distribution of the
variable SPATIAL might be close to normal (see fig. 10), however, Shapiro-Wilk’s
tests rejected the hypothesis of normality for both samples (p-value < 0.000 in both
cases). The same is also true for the variable Ch STRAT where even the Q-Q plot
suggests non-normality.

Figure 10: Distribution of the variable SPATIAL
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The success rates in Part B of the test were rather low for Sample 1 (the mean
for the variable CALC is less than 24%) and the number of pupils that skipped tasks
in this part of the test was relatively high. The distribution of the variable CALC
is, therefore, far from normal (see fig. 11, left). More than 170 Sample 1 pupils out
of 747 scored 0% in these tasks. For the Sample 2 pupils, the situation was better
(with a mean success rate of 44%), but the distribution of results is not normal
either. This is due to the fact that two out of the six tested classes in Sample 2 are
specialized in mathematics and their average scores are more than twice the results
of the other regular classes which causes the “fat tail” on the right-hand side of
the distribution (see fig. 11, right). The Shapiro-Wilk’s tests of normality rejected
the hypothesis of normality for both samples as well as for the variable F CALC
(p-value < 0.000 in all cases).

Figure 11: Distribution of the variable CALC for Sample 1 (left) and for Sample 2 (right)

Since the assumption of normality is not fulfilled for the analysed variables,
we decided to use both Pearson’s correlation coefficient as well as Spearman’s4 to
assess the relationship between the variables measuring non-measurement reasoning
(the variables SPATIAL and Ch STRAT) and the variables measuring the success
in area and volume calculations (the variable CALC for all calculation tasks and
F CONC for tasks which require conceptual understanding of area and volume).
The highest correlation was found between the variables SPATIAL and CALC —
for Sample 1, the Pearson’s correlation is 0.591 and for Sample 2, it is 0.534. Both
correlations are statistically significant (p-value < 0.000) and can be considered
ranging between substantial to strong (De Vaus, 2002). The Spearman’s correlations
for these variables for both samples are also statistically significant (p-value < 0.000)
with similar values: 0.610 for Sample 1 and 0.546 for Sample 2. Other correlations
are shown in tab. 7. All the displayed correlations are statistically significant with
the p-value < 0.005.
We can see that the correlations of the variable SPATIAL with success in concep-

tual tasks (F CONC) are also in the range substantial to strong for both samples —
with values above 0.51. The Pearson correlation of the variable Ch STRAT (the
ability to use different strategies in 2D transformation tasks) with the success in
area and volume problems is less strong — only in the range moderate to substan-
tial but still above 0.45 (De Vaus, 2002) for Sample 1. However, this correlation
proved to be much weaker for Sample 2 (well below 0.3).

4It does not require the normality of the variables.
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Table 7: Correlations between non-measurement reasoning and success in calculation
tasks

Pearson correlations
Sample 1 Sample 2

CALC F CONC CALC F CONC
SPATIAL 0.591 0.531 0.534 0.513
Ch STRAT 0.457 0.454 0.278 0.244

Spearman’s rho
Sample 1 Sample 2

CALC F CONC CALC F CONC
SPATIAL 0.610 0.543 0.546 0.525
Ch STRAT 0.361 0.353 0.284 0.251

The relatively strong relation between the variables SPATIAL and CALC is
clearly apparent from the scatter plot in fig. 12. Only the data for Sample 1 are
shown as the picture is similar for Sample 2. If used as a predictor, the variable
SPATIAL can explain almost 35% (i.e., 0.591 squared) of the variance of the target
variable CALC.

Figure 12: Scatter plot for the variables CALC and SPATIAL per pupil (Sample 1)

An even stronger relationship can be seen when we plot the average CALC
result against the average SPATIAL result for each class (see fig. 13). Here, the
average SPATIAL result predicts almost 73% of the average CALC result (Pearson
correlation is 0.854). There are 4 classes (labelled by acronyms in fig. 13) that
appear as exceptions to the trend suggested by the data. During discussion with
a teacher of one of the classes (namely, ZR.9A), it came out that she pays special
attention to the development of spatial skills of her pupils and that some of them
were taking voluntary lessons in technical drawing. However, what we see in the
graph is that this class has better CALC results than would be expected based on
their average SPATIAL result. This issue might require deeper analysis.
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Figure 13: Scatter plot for average results for the variables CALC and SPATIAL per
class (Sample 1)

4 Discussion of results

4.1 Lower-secondary pupils’ success and mistakes in

non-measurement and calculation tasks

Thanks to using the test in two samples, we were able to find which tasks were the
most difficult ones for our pupils. The 2D spatial tasks in Part A1 seem to be more
difficult than the 3D spatial tasks in Part A2. We can see two possible reasons. The
first is the time restriction of Part A1, not present for Part A2. The second lies in
the non-standard formulation of the tasks in Part A1 which, as our analysis shows,
do not appear in the Czech mathematics textbooks used in schools.
Calculation tasks proved to be difficult for our sample even though they are tasks

found within the Czech curriculum. In task H16, the pupils had to find the height
based on the volume and base of the cuboid and many of them failed. Our analysis
of the most used textbooks in Czech schools showed that this type of task is found
in them less frequently than the task to calculate the volume based on the lengths
of edges. Moreover, this problem is probably connected to difficulties Czech pupils
have when working with algebraic expressions. Some of them memorize 4 different
formulas for each variable instead of using only one (V = l × w × h) and deriving
the appropriate variable from it. The reason might be that the formula is mostly
taught earlier than rules for manipulating expressions.
Tasks H5 and H15 are among the tasks with the lowest success rate but a rel-

atively low omission rate. The tasks probably seemed easy to the pupils, but they
proved tricky. First, the pupils had to overcome a tendency to linearize which is
reported to be strong in many parts of mathematics (De Bock et al., 2007). Second,
the pupils might have worked in the pseudo-analytical thinking mode as described
by Vinner (1997). When pupils are working in this mode, they are using superficial
similarities and signals to select the fitting procedure to solve the task (without
really analysing the situation — kind of finding a “quick and dirty” solution). In
our case, many pupils did not make any diagram to get an insight into the task but
rather used formulas and calculations based on cue words. When looking at the
tasks that proved to be among the most difficult for pupils in both parts of the test,
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we note that many of them are tasks for which the first-hand (or “obvious”) solution
does not work (tasks H5, H15, U1, U7 and U15). To solve these tasks correctly, the
pupils had to “overcome” this obvious solution that did not yield the correct answer.
This might be partially explained by their pseudo-analytical thinking mode. Lack
of control mechanisms (e.g., checking the plausibility of the answer, analysing the
situation in more depth) is typical for this type of thinking.
The above points to the fact that there might be a common underlying factor

such as the culture of mathematical thinking (Hejný, 2007) that influences the pupils’
success in the test. Hejný characterizes the culture of mathematical thinking as,
among others, the ability to analyse the task in depth, consider various solving
strategies or transfer the problem into a different modus or representation. This
corresponds to our findings: in some of the most difficult non-measurement tasks
(U15, U1, U7) as well as in some of the most difficult calculation tasks (H5 and H15),
the pupils had to analyse the task in more depth, overcome an incorrect “obvious”
solution and find a different solving strategy. It is therefore possible that pupils
with a higher culture of mathematical thinking would perform better in both types
of tasks (non-measurement as well as measurement) simply because they are able
to take these steps. This issue calls for further investigation.
Finally, our study showed an increasing success rate between grades for calcula-

tion tasks, however, we also found differences between schools and individual classes.
Leaving aside the mathematical classes, the others are not specialized and if we take
into account the fact that the schools taking part in our research have similar pro-
files, we would not expect such a diversity. There may be many factors causing
it. Among them, the influence of the teacher and the way he/she introduces geo-
metric measurement is significant as intervention studies show (e.g., Huang, 2011;
Zacharos, 2006).

4.2 Relation between non-measurement reasoning and

success in area and volume calculations

When looking at the results of our study for individual pupils, their results in non-
measurement tasks predict almost 35% of the variance of the results in calculation
tasks and 28% of the variance for conceptual tasks. Note that the correlation re-
mained stable for both samples which adds to the robustness of our results. If we
look at average results for each class for the same two variables, the percentage
of explained variance of the average CALC result (per class) grows to 73%. This,
together with the fact that there are differences among classes in terms of their suc-
cess in calculation tasks, points to the fact that there is a common variable related
to the class (probably the teacher, his/her teaching methods, textbooks used) that
strongly influences both variables. If we look at the correlations between the SPA-
TIAL and CALC variables within individual classes, again, we see similar results as
the correlation calculated for all tested pupils.
The variable Ch STRAT that we introduced based on the factor analysis of the

results and that should relate to the ability to use different strategies for solving
2D transformation tasks, was relatively strongly correlated to success in calculation
tasks for Sample 1 but this was not the case for Sample 2. As stated above, the abil-
ity to use different solving strategies could indicate a higher culture of mathematical
thinking (Hejný, 2007) which we expect to influence both results, calculation as well
as non-measurement. Our findings are mixed since the results were not stable in
both samples. One of the reasons for this might be that we selected an insuffi-
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cient or incorrect indicator of the ability to change strategies (and the culture of
mathematical thinking cannot be described by this one factor only). Moreover, the
stronger relationship in Sample 1 might be caused by the higher number of pupils
that scored 0% in Ch STRAT (443 out of 720); 138 of them (i.e., 20% of tested
pupils) also scored 0% in CALC. In Sample 2, this is not the case — only 9 pupils
out of 123 scored 0% in both parts. This might indicate that the correlation in
Sample 1 was over-estimated since the tasks included in both variables were simply
too difficult for the tested pupils. As we concluded above, this issue would need
further investigation.
As stated above, research has established relationships between spatial skills and

performance in mathematics but the evidence of their link to geometric measurement
is scarce. Our study results can be compared to two studies.
For 3D, Pittalis and Christou (2010) found a very strong relationship between

spatial skills and measurement. They measured spatial skills including all the rel-
evant factors (i.e., not excluding spatial orientation as in our case). To measure
success in volume and area calculations, they used 4 tasks: calculation of the surface
of a solid constructed by unit-sized cubes (task 1); calculation of the surface/volume
of cuboids presented as open nets (tasks 2 and 3) and comparing the capacity of
rectangular and cylinder reservoirs (task 4). The relationship they found might be
slightly overestimated because one of the sub-tests of spatial skills (surface develop-
ment) tests the ability to compose solids out of nets and this skill is directly required
in tasks 2 and 3 of the calculation part. The relations we found in the present re-
search (i.e., the relationship between spatial skills and the pupils’ success in solving
calculation and conceptual tasks for area and volume) are in line with these findings
albeit not as strong. The reason for observing weaker correlations might be that our
test measures part of the spatial skills only (and the types of tasks are not equally
represented, for example, cube rotation is only used in one task) and due to using
different measurement tasks: 9 measurement tasks were used in our test including
area measurement (in a 2D situation and not only in a 3D one as was used by Pittalis
and Christou).
Hannighofer et al. (2011) focused on pupils’ measurement sense which they

assessed by tasks which can be roughly compared to our calculation tasks. They
reached a conclusion that from among gender, grades and figural reasoning, the
latter had the strongest effect on measurement sense. They do not present what
exactly they mean by figural reasoning, however, it seems to be related to spatial
skills. Thus, our results for lower secondary pupils correspond to their results which
relate to elementary pupils. Hanninghofer et al. suggest that an extra year of teach-
ing measurement does not enhance pupils’ success in measurement tasks as much as
the quality of their figural reasoning does. Similarly, we also suggest that the im-
provement of pupils’ non-measurement reasoning might influence their performance
in calculation tasks. Another result of Hanninghofer et al.’s study opens a new way
of looking at our data: in the group of pupils with a high figural reasoning ability,
there was no effect of gender on the measurement achievements, while in the group
with a low figural reasoning ability, the boys outperformed the girls in measurement
competence.

5 Limitations, implication and future work

Our study has its limitations. The first lies in the test samples — both were conve-
nience samples. However, the schools had similar profiles, catered for children from
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their immediate surroundings, and apart from a few classes which put more stress
on mathematics, there was no specialization. Moreover, the results are very similar
in both test implementations (for both samples), which should contribute to their
robustness. The second limitation concerns the qualitative analysis aimed at mis-
takes and misconceptions as it was only based on written solutions. Therefore, we
have presented the data with caution, for example, not presenting the percentage of
pupils committing the mistake, only its relative occurrence in the pupils’ work. Even
though we used a well-established distinction of non-measurement and measurement
(calculation) streams in a hypothetical learning trajectory for measurement in ge-
ometry, we necessarily used several concrete tasks to describe the pupils’ ability to
work within the streams. The results might have been different for a different set of
tasks.
Our study has some implications. The relation found between non-measurement

reasoning (i.e., a subset of spatial skills) and success in solving area and volume tasks
was found to be in the range substantial to strong. Based on our data, we cannot
conclude about the causality of the relationship, however, similarly to others (e.g.,
Pittalis & Christou, 2010), it can be tentatively suggested that better spatial skills
improve the pupils’ skills in measurement calculations. Certainly, non-measurement
reasoning proved to be tightly related to success in solving area and volume tasks
and (as shown also by Huang & Witz, 2011) should play an important role in the
teaching of area and volume concepts (as suggested by Battista, 2007, and others).
However, it is important to emphasize that the development of non-measurement
reasoning cannot replace numerical reasoning and, therefore, both of the streams
should develop in parallel and be interconnected.
During the analysis of the data, a number of interesting issues came up. First,

there were differences between individual classes which point to the significant role
of the teacher and/or the influence of the textbook used. Next, it would be worth-
while investigating in more detail those pupils and classes that scored high in the
calculation part but low in the spatial skills part (half of those with top ten differ-
ences comes from one class) and vice versa. More research is needed to explore the
way measurement in geometry is taught in the class (and possibly mathematics as
such) and the way pupils from the class deal with non-measurement and calculation
tasks. Finally, we have presented only those mistakes and misconceptions which are
related to the most difficult tasks in each part of the test but mistakes also appeared
in the solutions to other tasks as well. Interviews with pupils are needed to gain
deeper insight into some of them. Some interviews have already been conducted for
tasks H13 and H14 with Grades 5 and 6 pupils to see how pupils of this age group
structure space, what strategies they use and what the most common problems and
obstacles in solving these tasks are (Tůmová, 2017a).
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Appendix A — 2D spatial ability test

Below you will find 20 polygons, your task is to draw a single straight line where to
cut the polygon so that after rearranging the parts, you get an equilateral triangle.
The line for cutting must always connect two vertices of the polygon. You also must
indicate where the cut-off part should be placed as in the example below:

Task: You imagine: You draw:

1. 2. 3.

4. 5. 6.

7. 8. 9.
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10. 11. 12.

13. 14. 15.

16. 17. 18.

19. 20.
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Appendix B — 3D spatial ability test

Task H8: The picture on the left shows a template to make a box. Which of the
boxes can be made using this template? Mark Yes or No for each.

Task H9: How would the building made of cubes look from the other side (from the
back)? Example:

Building: You should draw:

a) b)

c) d)
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Task H10: The pictures below show the same cube from different perspectives,
however, one picture does not fit with the rest. Decide which one it is and cross it
out.

Task H11: Which of the tetrahedra cannot be obtained from the net by folding?
Cross it out.

Task H12: The green cube building has 9 cubes in the first layer, the red one
12 and the blue one 20. How many cubes do you have to add to get the smallest
possible completely filled prism (in other words, if the building was in a tightfitting
rectangular box, how many cubes would you have to add in order to fill that box
completely)?

Green: . . . . . . . . . . . . . . . . Red: . . . . . . . . . . . . . . . . Blue: . . . . . . . . . . . . . . . .
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Appendix C — Calculation tasks for area and

volume

Task H2: Determine the area of the triangle if you know that the smallest square
in the grid has the side of 1 cm. Draw two more figures with the same area.

Task H3: Determine the area and perimeter of the figure in the picture.

Task H4: The picture shows a plan of a garden. The hatched SQUARE represents
grass and the solid rectangle is a flowerbed. Calculate the area of the flowerbed if
you know that the area of grass (hatched square) is 64m2 and the shorter side of the
flowerbed is 3m long.

Task H5: We used 300 10 × 10 cm tiles to pave our bathroom. Now we want to
redecorate it and the new tiles are 20 × 20 cm. How many new tiles will I need?
Neglect the gaps between the tiles — as if there were none.
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Task H6: Will cut out the darker part of the rectangular board (see the picture).
His friend Paul is angry with him saying: “This way, you will throw away more
than half of the board.” Will disagrees and claims that the rest is smaller than the
part which he will use. Who is right and why?

Task H13: You have exactly 59 cubes (with the edge of 1 unit) to create a building
on a rectangular plot of land which is 4 units long and 3 units wide. You must use
all the cubes but the building has to be as LOW as possible. How many layers will
there be? How many cubes will there be in the top layer?

Task H14: What is the maximum number of parcels measuring 2× 1× 1 dm that
would fit into a cubic box with an edge of 6 dm? Justify your answer.

Task H15: A hundred cubes (each with an edge of 12 cm) fit into a box and fill it
completely. How many cubes with an edge of 4 cm do you need to fill the same box
completely? Justify.

Task H16: A cuboid-shaped vase has a base of 9 × 12 cm. If I pour one litre of
water inside, how high will it reach? (Hint: 1 l = 1 000 cm3).
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