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Abstract

This article describes a specific phase of the ontogenetic development of understanding
infinity, called the omega position, the identification of which is one of the results of
extensive research focusing on the perception of the infinity notion. Some 1 432 Czech
pupils and students between the ages of 8 to 20, participated in the first two sections of
this research between the years 2008 and 2011. This article describes in more detail, the
final qualitative part of the research that focuses on interviews with university students
with the aim of diagnosing this phase in their perception of infinity in various contexts.
It also describes some possibilities for the identification of the omega position and its
consequences for a successful study of those notions and ideas of mathematics, which
are associated with infinity. Further, the article puts the omega position into context
with potential or actual infinity, specifies individual developmental phases by means of
the notion horizon and explains some possibilities for mutual interference in the above-
mentioned developmental phases, employing the following two notions: that of primary
and secondary intuition.
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Pozice Omega – specifická fáze vnímání pojmu
nekonečno

Abstrakt

Článek popisuje specifickou fázi ontogenetického vývoje porozumění nekonečnu nazývanou
pozice omega, jejíž identifikace je jedním z výsledků rozsáhlého výzkumu zaměřeného na
vnímání pojmu nekonečno. Prvních dvou částí výzkumu se v letech 2008 až 2011 postupně
zúčastnilo celkem 1 432 českých žáků a studentů ve věku od 8 do 20 let. V článku je po-
drobně popsána závěrečná kvalitativní část výzkumu zaměřená na interview s vysokoškol-
skými studenty s cílem diagnostikovat tuto fázi v jejich pojetí nekonečna v různých kontex-
tech. Článek popisuje možnosti identifikace pozice omega a její konsekvence pro úspěšné
studium těch pojmů a idejí matematiky, které jsou spjaty s nekonečnem. Dává ji dále
do souvislosti s potenciálním a aktuálním nekonečnem, vymezuje jednotlivé vývojové fáze
pomocí pojmu horizont a vysvětluje možnosti vzájemného ovlivňování zmíněných vývo-
jových fází s využitím pojmů primární a sekundární intuice.

Klíčová slova: nekonečno, potenciální nekonečno, překážka, obzor, nevlastní číslo.
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The concept of infinity is fundamental to mathematics and the teaching thereof
(Fischbein, 2001; Tall & Tirosh, 2001). During the course of the history of math-
ematics, the development of aspects of knowledge surrounding infinity has created
crucial turning points essential for its further development. Not only for that reason
the modelling of the development of understanding infinity by an individual is also
an essential issue in the didactics of mathematics. In our research, which has been
carried out since 2008 and focuses on the understanding of infinity in students aged
between eight years and their university studies in a great number of differing con-
texts, we are endeavouring to describe this process of overcoming obstacles, specif-
ically the epistemological and didactical ones (Cihlář, Eisenmann & Krátká, 2013).
The previous research activities were focused, to a large extent, on more concrete

contexts, such as the structure of number domains (Winter & Voica, 2008; Ely 2010;
Bauer, 2011) and on questions concerning the number 0.9 (Katz & Katz, 2010; Yopp,
Burroughs & Lindaman, 2011), as well as functions and limit processes (Juter, 2006;
Monaghan 2001; Kidron & Tall, 2015), comparisons of infinite sets (Jahnke, 2001;
Tsamir, 2001) and a geometric context (Fischbein, 2001; Jirotková & Littler, 2004).
All of them, however, mostly refer to the difficulties students have while passing
from ‘the finite’ to ‘the infinite’ and they all agree upon the basic role played by the
initial intuitive ideas (Fischbein 2001; Jahnke, 2001; Dubinsky et al., 2005a, 2005b;
Kidron, 2011). Jahnke (2001: p. 194) claims that “[students’] initial intuition is
not really wrong, but applies only to a limited domain, whereas in other domains,
new intuitions must be formed.” A number of authors demonstrate the relationship
between the difficulties students are confronted with during the learning process and
the ‘breakneck’ historical development within a given area of mathematics (Katz
et al., 2000). However, Dubinsky et al. (2005a, 2005b) place emphasis on the
existence of a close relationship between the essence of mathematical concepts and
their development in the mind of an individual and therefore, if we wish to help
students overcome some difficulties in the comprehension of infinity, the first step is
to understand the essence of all these mechanisms.
One of the motives of our research was our belief that the present day view of

school education reflects insufficiently some specific features of the process of forming
proper views of the phenomena associated with infinity. The lack of stimuli confirms,
among other things, even an inadequate representation of suitable problems and
exercises in textbooks.
In this paper we provide a detailed analysis of one phase of the development

of an individual’s conception of infinity – the omega position, by means of which
some students intuitively work with sorts of ‘improper’ numbers or points and other
infinitely small or infinitely large objects. During the course of our research, we rely
on the generally accepted concept of the cognitive structure in (Piaget, 1977). While
analysing an individual’s journey, beginning with primary ideas and progressing to
ideas close to the ideal mathematical concepts, we construct our considerations based
on the theory of obstacles (Brousseau, 1997; Brousseau & Sarrazy, 2002) and that
of the cognitive conflict (Cihlář et. al., 2009) on the one hand, and the theory of
the position of the horizon (Vopěnka, 2011) on the other.

1 Theoretical background

1.1 The theory of obstacles and cognitive conflict

In a wider context, we assume that an individual builds the cognitive structure by
means of concept images “that are associated with the concept which includes all
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the mental pictures and associated properties and processes” (Tall, 2002: p. 6),
including primary and secondary intuition1 (Fischbein 1987; Singer & Voica, 2008)
and tacit models2 (Fischbein, 2001; Kidron, 2011).
An obstacle is comprehended as a set of items surrounding knowledge, firmly

anchored in an individual’s knowledge structure, which can be, under certain cir-
cumstances, successfully employed. However, this can both fail and produce bad
results in a new context (Krátká, 2010). For successful formation of further ideas, it
is necessary to overcome this obstacle, i.e. to distinguish which knowledge is trans-
ferable into the new context and which is not; and how to alter it so that it can
be utilised yet again in a new context (Brousseau, 1997). In our research, we have
focused on the obstacles of the didactic origin, in particular those of epistemological
origin.
The cognitive conflict is understood as a conscious discrepancy in the individual’s

cognitive structure. Since “only when conflicting aspects are evoked simultaneously
need there be any actual sense of conflict or confusion” (Tall & Vinner, 1981: p. 152).
For us, the cognitive conflict has become a tool for the identification and description
of obstacles while forming the individual’s notions about infinity in this research.
However, inducing cognitive conflicts is simultaneously crucial for overcoming the
obstacles that may occur in the teaching and learning process. Our elaboration on
the theory of the cognitive conflict for this purpose is covered in detail in (Cihlář
et al., 2009). In connection with the concept of infinity, Tall (1976, 1977) speaks
about the cognitive conflict and Swan (1983) mentions the so-called cognitive conflict
teaching approach as well in connection with a comparison of infinite sets.
The concept of cognitive conflict is also utilized within the framework of the

APOS theory, which is based on Piaget’s thoughts concerning the existence of a close
relationship between the quality of the mathematical concept and the development
of the individual’s mind (Dubinsky et al., 2005a).
The ideas emerging from the Piaget theory of developmental stages are resumed

by the theory of epistemological obstacles. This theory presumes that the construc-
tion of knowledge is not determined only by positive stages, as formulated by Piaget
and Garcia, but also by means of negative stages, including various rules, convic-
tions and ways of reasoning that create obstacles for those changes leading to further
stages (Sierpinska, 1994).

1.2 Theory of horizon

The discovery of how one or another pupil perceives the existence of objects in-
vestigated by science, plays a key role in the analysis of the development of an

1Fischbein distinguished between primary and secondary intuitions. Primary intuition is “de-
veloped in individuals independently of any systematic instruction as an effect of their personal
experience” (Fischbein, 1987: p. 202). Secondary intuitions are acquired, not through experience,
but through some educational interventions, when formal knowledge becomes immediate, obvious,
and accompanied by confidence. They are completely in line with the formal theory. Fischbein
explained, for instance, that “if for a mathematician the equivalence between an infinite set and
a proper subset of it becomes a belief — a self-explanatory conception — then a new, secondary
intuition has appeared” (Fischbein, 1987: p. 68).
2Fischbein (2001: p. 328) explains the role of tacit models as follows: “Sometimes, mental

models are used intentionally, consciously, but sometimes we are not aware of their presence and/or
of their impact. . . . The model brings with it also properties which are not relevant for the
original. Tacit models, being uncontrolled consciously, may lead to distorted interpretations and
conclusions.”
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individual’s conception of infinity. The difference in modalities of the being of real
or ideal objects, must be taken into account during the course of the process of
learning.
Another important basis for our analysis of the development of individual’s ideas

about infinity, is the conception of the horizon and changes of its position (Krátká,
2010). The horizon is explained as the line separating the illuminated part of an
observed object from the unilluminated. In addition to that, the horizon itself is
a subjective concept — it is a boundary of our viewing capabilities, whether as
a view in the sensual sense or a ‘view extended by knowledge’ (Vopěnka, 2011).
Mathematics as a science has been working with the ideal only since the antique
time, i.e. infinity as clearly characterized and independent of an individual. By
contrast, an individual grasps this concept by means of both “natural thinking
builds from concept imagery towards formalism” and “formal thinking builds from
the concept definition, marginalizing imagery and focusing on logical deduction”
(Tall, 2001: p. 235). An individual may view a set or an object as infinite, if it
stretches as far as its horizon. In this case, we speak about so-called natural infinity.
If we reach beyond a horizon, it means that we will extend the visible part and what
previously appeared to have been infinite, is no longer the case.
Ideal infinity is the sharpening of natural infinity, similarly to the thinning and

straightening of a drawn straight line. The sharpening of the given large set will
also result in the emergence of ideal infinity (Vopěnka, 2011). If we apply Tall’s
thinking (2001: p. 235) that there are “natural concepts of infinity, developed from
experience in the finite world, and formal concepts of infinity, derived from formal
definitions and deductions”, then, expressed in a simplified way, the child forms the
concept of natural infinity by means of the first way, when the individual’s ideas
based in their primary intuition. Beside that the concept of ideal infinity is formed
in both ways in which primary and secondary intuitions are employed.
On this route, an individual reaches certain (developmental) phases, which are

dealt with in the next chapter.

2 Conceptions of infinity

It is common for the didactics of mathematics to work with the notions of potential
infinity and actual infinity, which represent two significant stages in the development
of mathematics, as well as two phases in the development of pupils’ understanding.
As Kidron and Tall (2015: p. 186) write, “since Greek times, the natural conception
of infinity is the concept of potential infinity, including the unlimited possibility of
counting or the possibility of dividing an interval into successively smaller parts”.
Similarly, it seems to Singer and Voica (2008: p. 200) that “potential infinity is
functional and natural in children”. A long line of studies deals with circumstances of
this development from the potential conception of infinity to the actual conception.
These ideas are supported by Tall and Tirosh (2001: p. 131), who mention that
“This ‘never-ending struggle’ with potential infinity of the process proved to offer a
serious cognitive obstacle to students’ understanding of the limit concept.” Similarly,
Kidron and Tall (2015: p. 192) focused their research on “students’ ability to make
a transition from the potentially infinite process view to the concept of infinite sum
and on towards the formal definition of limit”.
We assume that it is essential to take into consideration even the primary phase

of natural infinity and pay attention to the specific phenomenon we started to call
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the omega position, in order to achieve a better understanding of the development
of students’ notions of infinity.
The following model of the developmental structure thus contains four types of

conceptions, including formal actual infinity, which corresponds to the understand-
ing of present-day school mathematics. The above-depicted classification, however,
cannot be perceived in such a simplified manner that the respondent has one con-
ception of infinity in all contexts.
The simplest and the earliest conception of infinity, which we encounter with our

respondents, is natural infinity. Natural infinity is a subjective phenomenon — a set
or an object may appear naturally infinite to individuals if it reaches as far as their
horizon. If we perceive sets as classically actual infinite (in the sense of the classical
set theory), the individual’s horizon lies within its framework and is immovable.
For instance, natural numbers in the individual’s perception ended with the largest
immovable natural number (for instance a trillion, etc.). The straight line in their
minds is identified with its image — i.e. the segment.
Potential infinity is a more advanced concept. The respondent is already aware

of the possibility that an arbitrary horizon can be surpassed; that his/her horizon is
therefore movable, but it still lies within the discussed set, which is understood as
a classically actual infinite set by us. Natural numbers in his/her mind set still end
with the largest natural number, whereby the actual size of which is unknown to us.
The straight line here is understood as a segment that can be limitlessly extended
in compliance with the Euclidian conception.
The term actual infinity is used to designate the situation in which all hori-

zons have already been broken through and the respondent disposes of notions of
contemporary school mathematics in the field of infinity.
However, there exists a group of learners/students that is not inconsiderable, the

ideas of which it is impossible to include in either of the above-described phases. For
instance, the set of natural numbers is extended by an ‘improper’ natural number,
which is bigger than all other natural numbers. This number (the respondent calls
it ‘infinity’) has some qualities of numbers — for instance, it designates the number
of elements of a set, but it also lacks some qualities — for instance the possibility
the addition of another number. Similarly, the straight line is extended as far as
‘infinity’ but it preserves its boundary (improper) point, so it is understood as an
‘infinite segment’. Kidron and Tall (2015) in their study concerning visualisation and
symbolism in the limit process categorized four types of students’ approaches to the
concept of the infinity sum of functions. Category I, II, and IV could be successfully
compared to the above-mentioned three phases. Category III, within which 28 % of
the interviewed university students fell, is characterised by the following statement:
“The infinite sum of functions is perceived as a legitimate object but not clearly as
the formal limit definition. The student views the infinite polynomial as a legitimate
object but does not yet fully grasp . . . a formal definition of the actual infinite sum”
(Kidron & Tall, 2015: p. 194). A part of these students “perceives the infinite sum
as a generic limit object” (Kidron & Tall, 2015: p. 194), what is a limiting object
conceived as having the same properties as the objects in the limiting process (Tall,
1991, 2009).
It is interesting that some learners in that phase of their understanding of in-

finity intuitively anticipate mathematical ideas that are precisely expressed in the
other mathematical disciplines (the theory of ordinal numbers, non-standard anal-
ysis (Robinson, 1996), the Conway theory of games and numbers (Conway, 2001),
projective geometry, etc.) and intuition, they base their considerations on, is on the
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one hand secondary, as it is influenced by the teaching surrounding actual infinity,
and on the other hand also primary, as it is possible to arrive at such considerations
by means of sharpening potential infinity and the subsequent transition of their
horizons. However, these learners usually work only with the idea of ‘one’ infinity,
but in two forms — i.e. ‘infinitely large’ and ‘infinitely small’ (Katz & Katz, 2010).
We consider the above-named phase of the individual’s ideas another develop-

mental phase in the understanding of infinity (apart from natural, potential, and
actual infinity) and employ the term omega position for its designation. The term
was chosen as the set of natural numbers and ordinal number omega make an ap-
propriate approximation of students’ idea of improper element.

3 Research goals and hypotheses

Based on the first two parts of research we suppose that a considerable portion
of secondary school students and fresh university students find themselves in the
phase of potential infinity or they are at the omega position. This understanding
of infinity thus can become an obstacle in the course of their learning basic terms
associated with the infinity phenomenon (for instance the limit of a sequence and a
function, sum of an infinite series). We are convinced that by means of diagnostics
of these phases the teacher will be able to solve more effectively the problems of
these students, which can be different in both the named phases. The teachers can
easily identify some manifestations of students who find themselves in the phase of
potential infinity. The omega position, however, is unknown for them. For that
reason, we have formulated the main goals of our research as follows:

• To determine proportional representation of students between the ages of 12
and 18, who have already overcome the primary phase of natural infinity and at
the same time are not in the phase of actual infinity, depending on the context.

• To create a tool for the identification of the omega position in all contexts and
views.

The following hypotheses are associated with the marked goals:

H1: A significant portion of fresh university students find themselves in the omega
position.

H2: Students get to the omega position when forced by the new context to change
their potential approach to infinity, to the actual approach.

4 The experiment

The research was carried out in three parts.

4.1 Interviews with pupils

In the first place, during the course of 2008 we conducted guided experimental in-
terviews with respondents from six age categories: 8, 10, 12, 14, 16 and 18 years old,
selected by our team. These were always been students of ordinary primary and sec-
ondary schools. In each age category four students were interviewed. The following
were the criteria for the selection of the respondents: the average or above-average
school assessment in mathematics and their ability to communicate in mathematics
classes; with both cases being evaluated by the teacher.
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The interviews were recorded by a video camera. These recordings were, after
their transcription into reports, analysed in great detail by the whole research team.
We concentrated primarily on the formulation of the obstacles in the understanding
of infinity and the process of their overcoming. When constructing approximate
scenarios from experimental dialogues, we applied a method resulting from the con-
structed reactions of the pupils, which means that our team of researchers was
attempting to prepare for all possible variants whilst predicting in which ways our
dialogue with pupils on the given theme might be developing. While analysing our
interviews, we were monitoring the process of inducing the cognitive conflict and
attempts to remove it.
This section of the research resulted in the primary formulation of some of the

epistemological obstacles the learners meet during the course of their creation of
notions associated with infinity. Another goal of this part of our research was to
elaborate the questionnaire of the highest possible quality for the subsequent section
of this research.

4.2 The questionnaire survey

Secondly, we were trying to find out, by means of a mass questionnaire survey, the
initial reactions of pupils solving the tasks that necessitate ideas associated with the
infinity concept. The key goal here was to identify the main sources of obstacles in
the understanding of the notion of infinity and the epistemological obstacles arising
from the process of creating this notion.
During the course of 2009, the questionnaire survey was carried out on a total

number of 1388 primary and secondary school students from six age categories (8,
10, 12, 14, 16 and 18 years old) at various types of schools3. The individual schools
and classes were selected with aim of gaining the most representative sample data.
The respondents answered in writing and anonymously. This research used different
learners from those used in the first part of the research. A detailed survey of
individual groups of respondents and detailed description of the methodology are
presented in (Cihlář, Eisenmann & Krátká, 2013).
This part of the research has resulted in the identification of the following two

main sources of obstacles in the understanding of infinity: the conception of the
existence of objects and positions of the horizon. Further, we have distinguished 15
epistemological obstacles in the process of creating the infinity concept divided into
four groups: knowledge about finite sets, replacement of an object by its model,
knowledge about finite processes and knowledge about the set of natural numbers
(Cihlář, Eisenmann & Krátká, 2013).

3The Czech Republic school system: Primary education lasts for a period of nine years and
is divided into two stages: i.e. a 5-year stage (from the age of 6 until the age of 11) and a 4-
year stage (from the age of 11 until the age of 15). Some of the primary schools focus on the
teaching of gifted children, i.e. selective language schools, eight-year secondary grammar schools
and schools with extended instruction in mathematics. In this article students up to the age of
15 will be designated as primary school students. Secondary education comprises three main types
of schools: secondary general schools (grammar schools), secondary technical and business schools
and secondary vocational schools. Schools of this type will be called high schools. Grammar schools
prepare students for their further studies at institutions of higher education. The above mentioned
secondary technical schools and numerous 4-year courses at secondary vocational schools prepare
students for a wide range of professions, as well as for further studies at institutions of higher
education. The 2-year and 3-year courses at Czech vocational schools prepare students for a great
variety of professional activities.
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4.3 Interviews with university students

When analysing the results of the first two parts of our research, we came across
the phenomenon of the omega position, which has already been mentioned above.
For that reason, we returned to individual interviews from the first part of the ex-
periment and, in particular, to the questionnaires from the second part. The results
have then been processed and evaluated, the omega position signs described in both
arithmetical and geometrical contexts, and that is from the point of view of distance
as well as depth. We focused hereby on the interview and questionnaire items that
indicate that the respondent may be in that phase.
As university teachers, we also asked ourselves whether in that phase of the

perception of infinity, there could also be new university students. Based on some
relevant items in the questionnaire we therefore compiled a scenario of our interviews
and during the course of the years from 2012 to 2013, carried out these interviews
with 20 university students from the first year of Jan Evangelista Purkyně University
in Ústí nad Labem. Those were students of technical branches of study and those
studying natural sciences with the exception of mathematics. When the interview
was undertaken the students had been studying the basic course in mathematics
for one or two months. The course usually lasts two semesters at the school of
economics, as well as those studies of technical and natural scientific orientation. The
students were not selected on a compulsory basis; they took part in the interview
voluntarily, on the basis of a call for participants. Ten of them were interviewed
separately; the remaining ten were asked selected questions in pairs. The interview
with students was always conducted by the same person of our research team. The
Interviewer always made a report at the end of each interview and this report was
subsequently analysed by the entire research team. The whole interview lasted
approx. 45 minutes. The interview scenario is described in the introductory part of
chapter 5.2.

5 Results and discussion

5.1 The questionnaire survey

Six items had been selected from all the questionnaire items4, those which enabled
us to determine reliably by means of selected answers on the one hand about the re-
spondent’s not being in the phase of natural infinity (NI) anymore, since its horizon
is immovable anymore, and at the same time the respondent being located in the
phase of actual infinity (AI), as their horizons have already been broken through.
However, based on the primary reaction we were not able to decide on the respon-
dent’s being at the phase of potentional infinity (PI), or at the phase of the omega
position (OP).
With all subsequent items, the phase of actual infinity is signallized by the re-

spondent’s negative response of the following type: “Such a number does not exist.”,
or “Such a point doesn’t exist.” The phase of potential infinity or the omega position
was identified according to the specific answers that followed.

4The complete questionnaire can be found as additional material on the magazine’s web site.
The questionaire had slightly differrent versions according to the respondents’ age.
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Task 4 (MAXIMNUMBER): What is the largest number?
Answers:

• “∞”
• “Infinity”

Task 14 (EVENLIMIT): The numbers 2, 4, 6, 8, 10, . . . are constantly increasing.
Determine the largest number that can be obtained in this manner.
Answers:

• “∞”
• “Infinity.”
• “Infinite multiple of two.”

Task 2 (MINIMPOSITIV): What is the smallest number bigger than zero?
Answers:

• “0.0 . . . 01′′

• “ 0.01”

Task 13 (RATIOLIMIT): The numbers 11 ,
1
2 ,
1
3 ,
1
4 ,
1
5 , . . . are constantly decreasing.

Determine the smallest number that can be obtained in this manner.
Answers:

• “0.0 . . . 01′′

• “ 0.01”
• “ 1∞”

Task 7 (MAXIMDISTANCE): There is a given straight line b and the point A, which
does not lie on this line. Construct segment AB with the point B, which lies on the
given straight line b with the segment AB as long as possible.

Fig. 1: Assignment of Task 7 MAXIMDISTANCE A

b

Answers:

• “B is in infinity.”
• “B is at the end of the line.”
• A parallel line is suggested.

Task 8 (AREASQMIN): Here is the square ABCD. Find the point X on its BC
side so that the triangle ABX will have the smallest possible area.
Answers:

• “It will be close above point B” or it is drawn in this sense.

• “As close to point B as possible.”

• X is drawn a bit above B.
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Tab. 1: Division of items according to the context and the kind of viewpoint

Arithmetical context Geometrical context
View into the distance MAXIMNUMBER

EVENLIMIT
MAXIMDISTANCE

View into the depth MINIMPOSITIV
RATIOLIMIT

AREASQMIN

Tab. 2: Observed frequencies with the following items: Task 4 MAXIMNUMBER and
Task 14 EVENLIMIT

observed frequencies
EVENLIMIT

Sum
Others AI PI or OP

MAXIMNUMBER Others 191 13 103 307
AI 78 29 65 172
PI or OP 154 9 340 503

Sum 423 51 508 982

Tab. 3: Expected frequencies in the following items: Task 4 MAXIMNUMBER and
Task 14 EVENLIMIT

expected frequences
EVENLIMIT

Sum
Others AI PI or OP

MAXIMNUMBER
Others 132.241 3 15.943 99 158.814 7 307.000 0
AI 74.089 6 8.932 79 88.977 6 172.000 0
PI or OP 216.669 0 26.123 22 260.207 7 503.000 0

Sum 423.000 0 51.000 00 508.000 0 982.000 0

These six items can be classified according to the mathematical context and the
kind of viewpoint into four kinds according to Tab. 1.
To be able to assess the reliability of our research, we investigated whether the

given variants of answers correlate with one another. In all six items, apart from
the above-mentioned variants in answers signalling the PI, OP or AI phases, we
were monitoring also the other variants of answers. By means of the chi-square
test for contingent tables were tested the hypothesis concerning the independence of
the answers on the selected pairs of items. The detailed results are mentioned only
for the first pair of Task 4 MAXIMNUMBER and Task 14 EVENLIMIT in Tab. 2
and 3.
The null hypothesis of independence was rejected at the the level of significance

being 1 % (chi-square= 151 834, df = 4, p = 0.000 00). By comparing frequencies
on the main diagonal in both the tables, it is evident that the observed frequencies
are significantly higher than those expected with the answers that are independent.
Both the items have a statistically significant correlation between the correspond-

ing variants of answers (Spearm. R = 0.308 624, p = 0.000 000).
The same result was observed in independence tests between the items in the

arithmetical context with view to the depth, between the items on the arithmetical
and geometrical contexts with both the views, as well as between the items with a
view into the distance and into the depth in both the contexts — null hypotheses of
independence were, in the majority of cases, rejected at the level of 1 % significance.
Thus, it is possible to certify that the reliability of our research task is sufficient.
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Let us focus at first on the learners who have already overcome the phase of nat-
ural infinity and are therefore in one of further phases (PI, OP or AI). The relative
frequency of the occurrence of corresponding variants of answers to individual ques-
tionnaire items in accordance with the learners’ age can be found in the following
two graphs — Fig. 2 and Fig. 3. Numeric data in the graphs are therefore only
lower estimates for the percentage of students who have already overcome the phase
of natural infinity.
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Fig. 2: View into the distance and into the depth in the arithmetical context
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Fig. 3: View into the distance and into the depth in the geometrical context
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By means of comparison of the values from graph in Fig. 2, we usually find out
that in the arithmetical context the phase of natural infinity, while applying the
view into the instance (Task 4 MAXIMNUMBER and Task 14 EVENLIMIT), has
already been overcome by more than one half of learners by the age of 12, while by
applying view into the depth (Task 2 MINIMPOSITIV and Task 13 RATIOLIMIT)
approx. only less than one third of learners of this age have overcome the phase of
natural infinity. Analogical conclusions can be drawn even in other age categories;
with the difference in our estimates of the percentage of learners being more than
20 %. The ability to move the horizon into the distance starts to appear in learners
in the arithmetical context much earlier than the ability to move the horizon into the
depth. It is caused by the learners’ coming into contact with natural numbers and
their properties (in particular their getting larger) much earlier than with decimal
or real numbers and their properties (in particular their getting smaller).
The situation in the geometrical context, more precisely in the situation when in

the learners’ imagination, a point moves to a straight line, is different. By comparing
the values from graph in Fig. 3, it is evident that the phase of natural infinity while
applying the view into the distance (Task 7 MAXIMDISTANCE) is overcome by
fewer students in all age categories than when applying the view into the depth
(Task 8 AREASQMIN). This can be caused by the fact that the learners have
predominantly the experience with construction geometry, realized on a piece of
paper (in the computer), where mutually close points in exercises and students’
ideas occur quite frequently, while the necessity to think about very distant points
arises only rarely. The view into the depth is not limited by paper, the view into
the distance, on the contrary, is significantly limited. In addition to this, with
a straight line a considerable number of learners replace an object by its model
(Krátká, 2005). With the Task 7 MAXIMDISTANCE, approx. one third of learners
draw the searched point, i.e. point B. at the end of the straight line. These learners
cannot be unanimously identified as those who have already overcome the phase of
natural infinity.
The following Tab. 4 shows the percentage of the learners who answer the follow-

ing items by offering negative answers and these learners therefore are at the phase
of actual infinity.

Tab. 4: The percentage of
learners who are at the phase of
actual infinity depending on
their ages

Item
Age

12 14 16 18
MAXIMNUMBER 20 % 14 % 20 % 14 %
EVENLIMIT 10 % 7 % 4 % 3 %
MINIMPOSITIV 7 % 11 % 5 % 1 %
RATIOLIMIT 10 % 7 % 4 % 2 %
MAXIMDISTANCE 10 % 26 % 10 % 6 %
AREASQMIN 6 % 9 % 5 % 1 %

The values in the table show that the transition into the phase of actual infinity
is the easiest in the arithmetical context when students apply the view into the
distance. Surprising is the finding that with the exception of the first item all other
items show the degressive trend in age categories 14 to 18 years. The apparent
paradox that learners abandon their ideas about actual infinity can be explained
also by their getting into the omega position. In this highly sensitive period of their
age, they speak about infinity at school in different connections and contexts and
secondary intuition starts forming in them.
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If we reduce the values from Fig. 2 and 3 by the values from Tab. 4, we will get
lower estimates for the percentage of the students who are at the phase of potential
infinity or in the omega position. Seeing that our mistake in determining the relative
frequency is approx. 3 %, it is possible to consider these dependencies on age, in
the majority of cases, as nondecreasing (see Fig. 4 and Fig. 5).
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Fig. 4: View into the distance and into the depth in the arithmetical context
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Fig. 5: View into the distance and into the depth in the geometrical context

Scientia in educatione 63 6(2), 2015, p. 51–73



The variants of answers to the selected items of the questionnaire did not enable
us to decide what number of respondents, whose percentages are indicated in Fig. 4
and 5, is in the phase of potential infinity and which is in the omega position. The
differentiation between these two phases was the subject of a further qualitative
section of our research.

5.2 Interviews with university students

The scenario of these interviews set itself the aim of enabling in respondents to
decide, in both the contexts and both the views, whether they find themselves in
the phase of the omega position or not. The respondent used to be gradually given
all six questions (or items of the questionnaire referred to in chapter 5.1). Apart from
some exceptions, the primary reaction of the respondents was one of the answers
described in the previous chapter. This indicates that respondents find themselves
in the phase of potential infinity or whether they are at the omega position. The
following lines then describe initiation questions with individual items. Their task
was to induce the cognitive conflict. According to the way by means of which the
respondent solved this conflict, it was possible to diagnose the omega position or to
reject it. Each item or each pair of items is afterwards followed by the respondents’
reactions and their interpretations.

Task 4 (MAXIMNUMBER): What number is the largest number?
Answers:

• “∞”
• “Infinity.”

Task 14 (EVENLIMIT): Numbers 2, 4, 6, 8, 10, . . . are constantly increasing. De-
termine the largest number that can be obtained in this manner.
Answers:

• “∞”
• “Infinity.”
• “Infinite multiple of two.”
Initiatory questions to both the items:

• “And what will you get when you multiply the infinity by two?”
• “And what will you get when you add one hundred to the infinity?”
When asked, two thirds of students responded that infinity again is the result.

They used the following answers: “This is not changed any more.”, “Infinity is the
largest and there is nothing else behind it.”
One third of the students mentioned as their first reaction that the result of

the above-mentioned operations is a number larger than infinity, but after a short
discussion the respondent was always brought to the cognitive conflict, the result
of which was his revision of the original answer in the sense that infinity does not
change, that it is the largest number behind which there is nothing else.
In the arithmetical context, while applying the view into the distance, the omega

position prevails in respondents. The following two items focus on the view into the
depth, still in the arithmetic context.

Task 2 (MINIMPOSITIV): What is the smallest number bigger than zero?
Answers:

• “0.00. . . 1”
• “0.01”
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Task 13 (RATIOLIMIT): Numbers 11 ,
1
2 ,
1
3 ,
1
4 ,
1
5 ,. . . are constantly decreasing. Deter-

mine the smallest number, which can be obtained in this manner.
Answers:

• “0.00ldots1”
• “0.01”
• “ 1∞”
Initiatory questions to both the items:

• “And what will you get when you multiply this number by number two?”
• “And what will you get if you multiply this number by ten?”
• “And what will you get when you divide this number by ten?”
At first, let us present the results of the students who answered 0.00 . . . 1 or 0.01.

Three quarters of students referred to the result 0.00 . . . 2 in their answers or they
said that the decimal point would be moved only by one position to the right or
that one zero would be added there. In the subsequent discussion, only one half of
them expressed themselves in the sense that the above-mentioned operations have
no influence on the result.
One quarter of the students answered immediately using the following words:

“This will not change; there is an infinitely number of these noughts.” Such an
answer enables us to diagnose the omega position in these students.
As far as the answer 1

∞ with the RATIOLIMIT item is concerned, all eleven
students who answered like that state that this number will not be changed in any
way by the proposed operations and that it is the smallest positive number and it
is not possible to make it bigger or smaller in any way.
In the arithmetical context, when applying the view into the depth it is possible

to diagnose the omega position, roughly speaking, in one half of the respondents.
Let us complete these considerations by an analysis of answers of the selected

students to the following item, which on the one side was part of the questionnaires,
but its evaluation did not enable us, due to the absence of full answers, to decide
which phase of the conceptions concerning infinity the respondents find themselves
in. When discussing that issue the respondents were always extremely engaged.

Task 15 (PER09): It holds that 0.9 < 1 or 0.9 = 1? Explain why.
Answers:

• “0.9 is smaller because it never reaches one although it comes closer to it.”
• “0.9 is smaller, because it never equals one even if there were an infinite number
of nine digits.”

Initiatory question:

• “You say that 0.9 is smaller than 1. What is then the difference between 1 and
0.9, what does therefore the number 1− 0.9 equal?”
The majority of the students answered in the same way: “Zero point, and infinite

number of noughts and at the end of that digit one.” In the answer to such a
question, it is possible to register the potential presence of the omega position. To
distinguish with whom this phase really prevails, we asked the students the initiation
question used in the previous items: “And what will you get, when you multiply
this number by ten?”
We could observe two kinds of answers.
Some students usually answer in the following way: “Zero point zero, zero and

the digit one will be shifted by one position to the left” (they point to the notation
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0.0 . . . 1 in front of digit 1). The students who answered like this perceive this last
decimal digit (here digit 1) as movable; i.e. they perceive the number of zeros
between the first and the last digit only as potentially infinite.
In contrast to that, other students answer in this way: “It will be the same, there

is an infinite number of zeros, and if I were to take one away, there would still be an
infinite number of them.” With these students, it is possible to identify the omega
position in this situation.
This concept can be understood as a special case of the generic limit, what

is a limiting object conceived as having the same properties as the objects in the
limiting process (Tall, 1991, 2009). The number 0.01 is bigger than 0, just like all
members of the sequence 0.1, 0.01, 0.001, . . . Contrary to those, the number 0.01
will not become bigger when multiplied by ten. It can also be an alternative to the
non-standard concept, as described by Katz and Katz (2010), where infinitely small
quantities are arrived at by extending decimal expansions. These infinitely small
quantities exist besides the classical real numbers in this theory (Ely, 2010).
The following two items of the dialogues focus on the geometrical context and it

is gradually realized by the application of both points of view.

Task 7 (MAXIMDISTANCE): There is a given straight line b and point A, which
does not lie on this line. Construct segment AB with point B, which lies on the given
straight line b with the segment AB as long as possible. (The text is accompanies
Fig. 1.)
The first answers:

• “B is in infinity.”
• “B is at the end of the straight line.”
Initiation questions:

• “But the straight line does not end anywhere, so why does it lie behind that
point B of yours?”

• “And what will happen when I shift point A by a small move to the left? Will
the segment AB be longer?”

• “What angle does the segment AB form with straight line b?”

• “Now I will drop a perpendicular line from point A to the straight line b. I’ll
designate its heel as point C and the centre of the segment AC as S. How long
will the segment SB be? Will it be shorter, or as long as the segment AB?”

Roughly one-half of all the interviewed students were led by the first above-
mentioned question to a contradiction, since they reacted for instance as follows:
“Then, there is still another point; then actually, only in it, does the segment end.
But, actually, I can continue moving the point further and further.” The second half
of the students reacted with the answer that can be represented by the following
words: “There is nothing there, it is the absolute last point on the straight line and
there is nothing else behind it.”
As far as the other initiation question is concerned, all students, apart from

one, claimed that the new segment AB would be longer. Only one student reacted
with the following words: “The segment is infinitely long, this will not change.”
The answer in the majority of respondents bears testimony that these students,
in spite of their previous reactions, are not in this context at the omega position.
From the analysis of answers to previous items at the same time, it emerged that
in the arithmetical context a considerable number of these students had been at

Scientia in educatione 66 6(2), 2015, p. 51–73



the omega position. One of the possible explanations can be the fact that stu-
dents, in the course of their common lessons of synthetic geometry, do not solve
tasks in which it would be necessary to think about the position of the horizon
and start moving it further. Neither has teaching analytical geometry, in which a
straight line is parameterized by a set of real numbers, had any influence on this
phenomenon.
With the third initiation question, students either used to answer saying that

“the angle comes closer, in a limit way, to zero” or that “its size is an infinitely small
number, the one we were talking about a short while ago.”
Here the geometrical context was projected into an arithmetical context. The

first answer indicates a procedural understanding of the problem; the other can refer
to the omega position.
In the situation induced in the fourth initiation question, all students answered

that segment SB would be shorter than segment AB. One student reacted by means
of the following words: “We could do such division of the segment into two halves
into infinity and then these segments SB would be nearly of the same lengths.”
Based on the respondents’ answers to the second and the fourth initiation ques-

tions, it is possible to hypothesize that with the exception of one student, no one
finds himself in the omega position. The students’ reactions correspond with their
experience with finite objects, in this context based on primary intuition.
The second answer:

• A parallel line is suggested.
Initiation question:

• “And where will your straight line intersect with the straight line b?”

Answer ‘A parallel line is suggested’ was given by three respondents only. All
of them reacted by means of the following words: “In infinity. Here also lies that
point B.”
With these three students, it was the case of the omega position. They did not

even change their opinions in the subsequent debate. For these students a straight
line is actually infinitely long. However, it has a boundary point. Jirotková and
Littler (2004) in their research analysis interviews in which students suppose that
parallel lines meet at this improper point in infinity. It is a sort of intuitive idea
from projective geometry.

Task 8 (AREASQMIN): There is the square ABCD. Find the point X on its BC
side so that the triangle ABX will have the smallest possible area.
Answers:

• “It will be close above point B” or it is drawn in this sense.

• “Closest to point B.”

• X is drawn slightly above point B.

Initiation question:

• “And what about the centre S of the segment BX? Isn’t the area of triangle
ABS even smaller?”

Roughly one third of all the interviewed students answered here that segment
has BX as its centre and that the area of triangle ABS is even smaller than that
of triangle ABX. After the discussion, they arrived at the conclusion that they will
always find another point X, which lies on the side BC and that it is consistently
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closer to point B. Conceptions of these students correspond with the phase of
potential infinity.
Another third of the students reacted typically with the following words: “No,

the segment BX has no centre, that point X lies close to point B, this is in fact the
closest point to the point B.” It resulted from the discussion with the respondents
that the reason for this answer is not concealed in the above-mentioned obstacle
Replacement of an object with its model, specifically here in the ‘bead-like’ idea of
the point. Thus, with these students the omega position can be recognized.
The remaining students reach the following contradiction in the discussion: “Seg-

ment BX is of infinitely small length, the distance between these points nearly equals
zero; it cannot be determined, but the point is infinitely small, then actually that
centre should still lie there.” The established cognitive conflict, however, endures.
It is a case of the so-called vain attempt at removing the cognitive conflict (Cihlář
et al., 2009).
In chapter 5.1, it is hypothesized that students between at the ages 12–18, leave

the phase of natural infinity in the geometrical context more easily while applying
the view into the depth than when applying view into the distance. Students do not
need in the tasks they solve, in the majority of cases, the view into the distance.
Statements from freshmen at universities confirm this view.
In conclusion, we wish to express our opinion concerning the mutual ratio of

respondents who are in the phase of the omega position or in the phase of potential
infinity. This ratio can differ according to the context, as well as the type of view.
Estimates of relative frequencies can be seen in the following Fig. 6.

Arithmetical context Geometrical context

View into
the distance

View into
the depth

OP Phase PI Phase

Fig. 6: Comparison of students’ relative frequencies in the OP and PI phases

In the arithmetical context, more students find themselves in the omega position
than in the geometric context. When applying the view into distance, more students
find themselves in the arithmetical context than in the view into the depth, while
in the geometrical context it is vice versa.
In order to have a complete picture, let us state at the end of this chapter that

only two students out of the total number of twenty interviewed, have proved in
three cases that their perception is, in this particular context, in the phase of actual
infinity.
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The student Richard, in connection with Task 2 MINIMPOSITIV and Task 13
RATIOMLIMIT, stated that no such number exists: “But still, I will always find a
smaller and smaller positive number or a smaller fraction than any number you will
give me. The smallest number bigger than zero is nonsense.”
The student Michal is completely clear about the geometrical context while look-

ing into the distance. In connection with the Task 7 MAXIMDISTANCE, he says:
“I cannot construct such a segment. By doing it I would change the straight line
into a segment.”

6 Conclusions

It has been discovered by virtue of this research, that it is necessary to extend the
categorization of students’ conception of infinity. Besides the phases of potential
infinity (PI) and actual infinity (AI), it is also suitable to work with the phases of
natural infinity (NI) and the omega position (OP).
The phase of natural infinity is, from the temporal point of view, its primary

phase, when the learners’ ideas are still at a lower level of abstraction and the phase
is still often connected with real objects. Sets of numbers and points prove to be
naturally infinite to them provided that they stretch as far as their horizons. The
horizon in this case is fixed within the given time. The largest or the smallest
positive numbers are those, which can be written down and named by the learners,
they imagine a straight line as a very long segment; they can also conceive the idea of
two neighbouring points on the line segment (just like two small beads on a string).
They consider groupings consisting of numerous real objects, as infinite (little grains
in the heap of sand).
Just as the horizons of human cognition used to shift in view into the distance

or depth by means of a pair of binoculars or a microscope, the learners’ horizons
inch their way analogically during the course of the development of their mathe-
matical ideas. They become gradually acquainted with larger and larger numbers,
as well as smaller and smaller positive numbers. Provided that the learners have
already accepted these facts, i.e. that to each of the positive numbers there exists
another larger (or respectively a smaller) number and that the straight line can be
‘arbitrarily extended’, then they are in the phase of potential infinity. Their hori-
zon is already transferable ‘without any limitation’, but it still lies within the set
understood objectively as actually infinite.
Only when students ‘break all horizons’ in their conception, do they get into the

phase of actual infinity. In their imagination they can work for example with a set
of real numbers or even with a set of all the points of a straight line, which are
understood as existing wholes.
The second part of our research, described in chapter 5.1, has brought a piece of

knowledge that some students’ ideas about infinity cannot be included into any of the
three above-described phases. These ideas are again characterized by the appearance
of a fixed horizon, but not within the framework of the set under consideration (as it
happened with potential infinity), but outside of this objectively actually understood
set — at its ‘end’. A typical representative of these ideas is ‘an infinitely large’ or ‘an
infinitely small’ number, or a point at the end of a straight line, etc. The association
with ordinal numbers has induced us to giving a name to this new phase — the
omega position. As the questionnaire used in the second part of our research did
not enable us to distinguish unambiguously the phase of potential infinity from the
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omega position in individual students, we prepared interview scenarios, the results
of which are described in chapter 5.2. These interviews, the scenarios of which
provide us with an operative tool for the identification of the omega position (the
second goal of our work), have proved that a significant number of students are in
the omega position and these students work in their conceptions with infinity as a
‘limit object’ or with an improper element. Thus, the first research hypothesis H1
has been confirmed.
When comparing the results of chapters 5.1 and 5.2, we can see that an interesting

agreement starts to take form. Chapter 5.1 refers to proportional representation of
pupils between the ages of 12–18, who have already overcome the primary phase of
natural infinity and at the same time they are not yet in the phase of actual infinity
(the first part of the work). These students are therefore in the phase of potentional
infinity or the omega position. In chapter 5.2, the estimates of the proportional
representation of both the phases in university students are referred to, i.e. those
starting their studies. In both the cases, higher frequencies are revealed in the
arithmetical context with the view into the distance, but in the geometrical context,
higher frequencies can be found with the view into the depth. We can see the causes
for these phenomena (as described above) in the learners’ experience with specific
tasks in their mathematical schoolwork. The accord itself is then interpreted as
follows: the conception of the movable horizon in given contexts and views (entering
the PI phase) is just as difficult as its anchoring in an improper position (accepting
the OP phase).
The second research hypothesis H2 supposed that the omega position is a tran-

sitional developmental phase between potential and actual infinity and that it is
created predominantly by means of primary intuition, now when the individual is
forced to change his potential approach to infinity to the actual one by applying a
new context. This means that the potential approach can be an obstacle to actual
understanding. The third part of this research, focused on interviews with students,
however, has brought even another possibility that the omega position comes into
existence by means of secondary intuition only after the students get some informa-
tion about actual infinity. This hypothesis has been confirmed only partially, as one
of the possibilities. Individual developmental paths of students’ ideas about infinity
thus can be depicted by the scheme in Fig. 7.

Natural
infinity

Potential
infinity

Actual
infinity

Omega
position

Fig. 7: The scheme of possible transitions between the phases of ideas of infinity

Taking into consideration that the research carried out so far has been, from
the temporal point of view, a cross-sectional study, it would also be necessary to
carry out a longitudinal study for the purpose of mapping the development of pupils’
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ideas. This is one of the possibilities for subsequent research. Another possibility is
represented by the omega position research with dependence on age, the context and
type of view. For further application of the research results in practice it would be
useful to find out in what situations, in teaching university mathematics, the ideas
at the level of the omega position are an obstacle and in which, on the contrary,
they are effective.
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