The analysis of electrolyte chemistry pictorial material in lower secondary chool chemistry textbooks in Slovenia based on developed quality criteria
PDF

Keywords

primary school, chemistry, textbooks, quality criteria of textbooks

How to Cite

Zupanc, N., & Devetak, I. (2021). The analysis of electrolyte chemistry pictorial material in lower secondary chool chemistry textbooks in Slovenia based on developed quality criteria. Scientia in Educatione, 12(1), 5-15. https://doi.org/10.14712/18047106.1926

Abstract

The textbook as a learning tool and learning resource contributes significantly to the effectiveness of the teaching or learning process itself, while at the same time promotes and facilitates independent learning. The main purpose of this research was to develop quality criteria after which textbooks for Chemistry in lower secondary school were evaluated. This paper presents the analysis of electrolyte chemistry pictorial material presented in chemistry textbooks. When it comes to validating textbooks in Slovenia, there are no unified criteria. The development of the criteria included an overview of the objectives set in the chemistry curriculum. Criteria were made for textbooks used in 8th and 9th grade of lower secondary school (students age 13–15 years). Chemistry textbooks were validated in the school year 2018/2019. When analysing criteria related to textbook representations, the sub-microscopic representations and hybrid representations are the least common features in the textbooks.

https://doi.org/10.14712/18047106.1926
PDF

References

Bergqvist, A., & Chang Rundgren, S.N. (2017). The influence of textbooks on teachers’ knowledge of chemical bonding representations relative to students’ difficulties understanding. Research in Science & Technological Education, 35(2), 215–237. https://doi.org/10.1080/02635143.2017.1295934

Bölsterli, K., Wilhelm, M., & Rehm, M. (2014). Empirisch gewichtetes Schulbuchraster für den naturwissenschaftlichen kompetenzorientierten Unterricht. Perspectives in Science – Special Issues Progress in Science Education, 5(1), 3–13. https://doi.org/10.1016/j.pisc.2014.12.011

Carney, R.N., & Levine, R. J. (2002). Pictorial Illustrations Still Improve Students’ Learning from Text. Educational Psychology Review, 14(1), 5–26. https://doi.org/10.1023/A:1013176309260

Cook, M. (2008). Students Comprehension of Science Concepts Depicted in Textbook Ilustrations. Electronic Journal of Science Education, 12(1), 39–54. https://ejrsme.icrsme.com/article/view/7765

Cvirn Pavlin, T., Devetak, I., & Jamšek, S. (2016). Peti element 9, učbenik za kemijo v 9. razredu osnovne šole [Fifth element, chemistry textbook for 9th grade] Rokus Klett.

Davidowitz, B., & Chittleborough, G. (2009). Linking the macroscopic and sub-microscopic levels: diagrams. In J.K. Gilbert & D. Treagust (Eds.), Multiple representations in chemical education (pp. 169–191). Springer https://doi.org/10.1007/978-1-4020-8872-8 9

Demirdö˘gen, B. (2017). Examination of chemical representations in Turkish high school chemistry textbooks. Journal of Baltic Science Education, 16(4), 472–499. http://www.scientiasocialis.lt/jbse/files/pdf/vol16/472-499.Demirdogen JBSE Vol.16 No.4.pdf

Devetak, I., Urbančič, M., Grm, K. S.W., Krnel, D., & Glažar, S.A. (2004). Submicroscopic representations as a tool for evaluating students’ chemical conceptions. Acta Chimica Slovenica, 51(4), 799–814. http://acta-arhiv.chem-soc.si/51/graph/acta-51(4)-GA.htm

Devetak, I., & Glažar, S.A. (2007). Chemistry teachers’ mentoring in Slovenian primary and secondary school. In M. Zuljan & J. Vogrinc (Eds.), Professional inductions of teachers in Europe and elsewhere (pp. 102–115). University of Ljubljana, Faculty of Education https://doi.org/10.13140/2.1.3087.5527

Devetak, I., Vogrinc, J. & Glažar, S.A. (2009a). Assessing 16-year-old students’ understanding of aqueous solution at submicroscopic level. Research Science Education, 39(1), 157–179. https://doi.org/10.1007/s11165-007-9077-2

Devetak, I., Lorber, E.D., Juriševič, M., & Glažar, S.A. (2009b). Comparing Slovenian year 8 and year 9 elementary school pupils’ knowledge of electrolyte chemistry and their intrinsic motivation. Chemistry Education Research and Practice, 10(4), 281–290. https://doi.org/10.1039/B920833J

Devetak, I., Vogrinc, J., & Glažar, S. (2010). States of Matter Explanations in Slovenian Textbooks for Students Aged 6 to 14. International Journal of Environmental and Science Education, 5(2), 217–235. https://files.eric.ed.gov/fulltext/EJ884420.pdf

Devetak, I., & Vogrinc, J. (2013). The criteria for evaluating the quality of the science textbooks. In M. Kihne (Ed), Critical analysis of science textbooks (pp. 3–15). Springer, Dordrecht. https://doi.org/10.1007/978-94-007-4168-3 1

Gabel, D. (1999). Improving teaching and learning through chemistry education research: a look to the future. Journal of Chemical Education, 76(4), 548–554 https://doi.org/10.1021/ed076p548

Gkitzia, V., Salta, K., & Tzougraki, C. (2011). Development and application of suitable criteria for the evaluation of chemical representations in school textbooks. Chemistry Education Research and Practice, 12(1), 5–14. https://doi.org/10.1039/C1RP90003J

Hegarty, M., Carpenter, P.A., & Just, M.A. (1991). Diagrams in the comprehension of scientific texts. In R. Barr, M. L. Kamil, P. B. Mosenthal, & P.D. Pearson (Eds.), Handbook of reading research (2nd ed., pp. 641–668). Lawrence Erlbaum Associates, Inc.

Hinze, S.R., Rapp, D.N., Williamson, V.M., Shultz, M. J., Deslongchamps, G., & Williamson, K.C. (2013). Beyond ball-and-stick: Students’ processing of novel STEM visualizations. Learning and Instruction, 26(1), 12–21. https://doi.org/10.1016/j.learninstruc.2012.12.002

Irez, S. (2010). Nature of science as depicted in Turkish biology textbooks. Science Education, 93(3), 422–447. https://doi.org/10.1002/sce.20305

Johnstone, A.H. (1991). Why is science difficult to learn? Things are seldom what they seem, Journal of Computer Assisted Learning, 7(2), 75–83. https://doi.org/10.1111/j.1365-2729.1991.tb00230.x

Johnstone, A.H. (2000). Teaching of chemistry-logical or psychological? Chemistry education Research and Practice, 1(1), 9–15. https://doi.org/10.1039/A9RP90001B

Kapici, H., & Acikalin-Savasci, F. (2015). Examination of visuals about the particulate nature of matter in Turkish middle school science textbooks. Chemistry education Research and Practice, 16(3), 518–536. https://doi.org/10.1039/C5RP00032G

Kovač, M., Kovač Šebart, M., Krek, J., Štefanc, J., & Vidmar, T. (2005). Učbeniki in družba znanja [Textbooks and society of knowledge]. Znanstveni inštitut Filozofske fakultete.

Kozma, R., & Russell, J. (2005). Students becoming chemists: Developing representational competence. In J. Gilbert (Eds.), Visualization in science education (pp. 121–146). Kluwer. https://doi.org/10.1007/1-4020-3613-2 8

Lee, V. (2010). Adaptations and Continuities in the use and design of visual representations in US Middle School Science textbooks. International Journal of Science, 32(8), 1099–1126. https://doi.org/10.1080/09500690903253916

Leivas Pozzer, L., & Roth, W. (2003). Prevalence, function and structure of photographs in high school biology textbooks. Journal of Research in Science Teaching, 40(10), 1089–1114. https://doi.org/10.1002/tea.10122

Marentič Požarnik, B. (2016). Psihologija učenja in pouka: temeljna spoznanja in primeri prakse [School psychology, research and practice], DZS.

Marinč, M. (2010). Analiza trenutno veljavnih slovenskih učbenikov za kemijo v osnovni in srednji šoli (diplomsko delo) [Analysis of current high school chemistry textbooks] [Diploma thesis]. University of Ljubljana, Faculty of Education.

Mayer, R. (2014). Introduction to Multimedia Learning. In R. Mayer (Eds.), The Cambridge Handbook of Multimedia Learning (pp. 1–24). Cambridge University Press. https://doi.org/10.1017/CBO9781139547369.002

Mohammed, F.R., & Kumari, R. (2007). Effective use of textbooks: a neglected aspect of Education in Pakistan. Journal of Education for International Development, 3(1), 1–11.

Mulford, D.R., & Robinson, W.R. (2002). An inventory for alternate conceptions among first-semester general chemistry students. Journal of chemical education, 79(6), 739–744. https://doi.org/10.1021/ed079p739

Nyachwaya, J. M., & Wood, N.B. (2014). Evaluation of chemical representations in physical chemistry textbooks. Chemistry Education Research and Practice, 15(4), 720–728. https://doi.org/10.1039/C4RP00113C

Pedrosa, M.A., & Dias, M.H. (2000). Chemistry textbook approaches to chemical equilibrium and student alternative conceptions. Chemistry Education Research and Practice, 1(2), 227–236. https://doi.org/10.1039/A9RP90024A

Piht, S., Raus, R., Kukk, A., Kerli, M., & Riidak, K. (2013). Students interpretations of the 6th grade science textbook design. Procedia-Social and Behavioural Sciences, 112(1), 861–872. https://doi.org/10.1016/j.sbspro.2014.01.1243

Rusek, M., & Vojíř, K. (2019). Analysis of text difficulty in lower-secondary chemistry textbooks. Chemistry Education Research and Practice, 20(1), 85–94. https://doi.org/10.1039/C8RP00141C

Sagadin, J. (1993). Poglavja iz metodologije pedagoškega raziskovanja [Chapters’ from pedagogical methodology] Zavod Republike Slovenije za šolstvo in šport.

Sanger, M. J., & Greenbowe, T. J. (1999). An analysis of college chemistry textbooks as sources of misconceptions and errors in electrochemistry. Journal of chemical Education, 76(6), 853–859. https://doi.org/10.1021/ed076p853

Shehab, S. S., & BouJaoude, S. (2017). Analysis of the chemical representations in secondary Lebanese chemistry textbooks. International Journal of Science Mathematics Education, 15(5), 797–816. https://doi.org/10.1007/s10763-016-9720-3

Slough, S.W., McTigue, E. M., Kim, S., & Jennings, S.K. (2010). Science textbooks’ use of graphical representation: A descriptive analysis of four sixth grade science texts. Reading Psychology, 31(3), 301–325. https://doi.org/10.1080/02702710903256502

Stern, L., & Roseman, J. (2003). Can Middle-School Science Textbooks help students learn important ideas? Findings from Project 2061’s curriculum evaluation study. Journal of research in science teaching, 41(6), 538–568. https://doi.org/10.1002/tea.20019

Stieff, M., Scopelitis, S., Lira, M. E., & Desutter, D. (2016). Improving representational competence with concrete models. Science Education, 100(2), 344–363. https://doi.org/10.1002/sce.21203

Stull, A.T., Hegarty, M., Dixon, B. L., & Stieff, M. (2012). Representational translation with concrete models in Organic Chemistry. Cognition & Instruction, 30(4), 404–434. https://doi.org/10.1080/07370008.2012.719956

Svetlik, K., Japelj Pavešič, B., Kozina, A., Rožman, M., & Šteblaj, M. (2007). N aravoslovni dosežki Slovenije v raziskavi TIMSS 2007, mednarodna raziskava trendov znanja matematike in naravoslovja [Timss 2007, natural science education results in Slovenia], Pedagoški inštitut.

Šegedin, P. (2000). Understanding of chemical and physical change. In A. Glavič & D. Brodnjak-Vončina (Eds.), Abstracts of the Slovenian chemical days (pp. 451–456). Slovenian Chemical Society.

Taber, K. S. (2013). Revisiting the chemistry triplet: drawing upon the nature of chemical knowledge and the psychology of learning to inform chemistry education. Chemistry Education Research and Practice, 14(2), 156–168. https://doi.org/10.1039/C3RP00012E

Upahi, J. E., & Ramnarain, U. (2019). Representations of chemical phenomena in secondary school chemistry textbooks. Chemistry Education Research and Practice, 20(1), 146–159. https://doi.org/10.1039/C8RP00191J